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SAMMANFATTNING

Denna rapport ir ett resultat av EURARE-projektet, vilket bekostades av Europeiska kommissionen
for att utveckla en plan for héllbar exploatering av Europas fyndigheter av sillsynta jordartsmetaller
(REE).

Projektets huvudmal var att skapa en grund for att kunna utveckla en hallbar virdekedja som siker-
stiller kontinuerlig tillging av ramaterial och produkter innehillande REE. Dessa rimaterial och
produkeer ir kritiska for EU:s industrisektorer, som till exempel bil-, elektronik- och kemiindustri.

EURARE-projektet omfattade verksamhet och uppgifter inom omradena geologi, gruvdrift, anrik-
ning, utvinning och lagstiftning kring REE. Projektet sammanstillde dessutom en databas av nu
kinda REE-fyndigheter i EU. Tillsammans med andra nationella geologiska undersékningar arbe-
tade Sveriges geologiska undersdkning (SGU) huvudsakligen med de rent geologiska fragorna.

SGU har levererat uppdaterad geologisk information och resursdata om kinda REE-mineralise-
ringar i Sverige. Bakomliggande arbete omfattade dels litteraturstudier av ldre geologiska publikatio-
ner och rapporter, dels filtarbete. Litteraturstudierna ledde till en uppdatering av SGU:s fyndighets-
databas med nya férekomster och till idéer om vidare undersékningar. Filtarbetet bedrevs i omraden
med kinda REE-férekomster. Fler an 200 bergartsprov frin utvalda fyndigheter togs for kemisk och
mineralogisk analys. Vid provtagningen anvindes i nigra fall en barbar XRF-utrustning for att spara
eventuella f6rhojda halter av REE. SGU har ocksa provat hyperspektral IR-analysteknik pa olika
provmaterial.

REE-mineraliseringarna i Sverige dr spridda 6ver hela landet, dven om vissa omraden har relativt
fler forekomster. De vanligaste typerna finns associerade med apatitjarnmalmerna i Norrbotten och
Bergslagen, skarnjirnmalmerna i Riddarhytte-Norbergsomradet, det magmatiska komplexet i Norra
Kirr samt i Olserum- och Alndomréadena.

Denna rapport presenterar utvalda resultat fran filtarbetet och frin mineralogiska och petrologiska
studier samt geokemiska data och tolkningen av dessa. Samtliga aktiviteter i EURARE-projektet
ledde till 6kade kunskaper om ett antal fyndigheter och dessutom till att ett par nya upptickees. Det
ar dock ocksd tydligt att flera mineraliseringar skulle beh6va studeras ytterligare. Féreliggande rapport
ger en omfattande Gverblick av och inblick i potentialen f6r REE-mineraliseringar i Sverige och tillfor
virde for forskningen genom att lyfta det ekonomiska perspektivet pa REE.

EDITOR: MARTIYA SADEGHI



ABSTRACT

This report is a result of the EURARE project which was funded by the European Commission
to address the “Development of a sustainable exploitation scheme for Europe’s Rare Earth Element
ore deposits”.

The main goal of the EURARE project was to set a basis for sustainable development of a Euro-
pean REE value chain to safeguard uninterrupted supply of REE raw materials and products. These
materials and products are crucial for the EU economy-driven industrial sectors, such as the automo-
tive, electronics, engineering and chemicals industries.

EURARE included activities and tasks on geological resources, mining and beneficiation, extraction
and separation, and regulation in relation to REE. In addition, EURARE provides a database of cur-
rently known REE deposits within the EU. Alongside other national geological surveys, the Geologi-
cal Survey of Sweden (SGU) was mainly involved in the geological work undertaken.

SGU delivered updated geological information and resource data on known REE mineralisations
in Sweden. The work included an extensive literature review of previous publications and reports, which
led to updates of SGU’s national database with additional occurrences, as well as suggestions for new
investigations. Field work activities were carried out in several REE-mineralised areas and were fol-
lowed by analysis of selected mineralisations, as well as new ore classifications. More than 200 rock
samples were taken and analysed for chemical composition, and in part for mineralogy and petrograp-
hical features in thin and thick sections. For the collection of samples, portable XRF equipment was
in some cases tested for the tracing of elevated REE concentrations, and testing also included the use
of hyperspectral imaging techniques on different sample materials.

REE occurrences in Sweden are distributed throughout the country, although some regions are
better endowed than others. Major deposit types are the apatite-iron oxide mineralisations in Norrbot-
ten and Bergslagen, the skarns of the Riddarhyttan—Norberg belt, the Norra Kirr complex, and the
Olserum and Alno areas

This report presents a selection of results from field work, mineralogical and petrological studies, as
well as geochemical data and interpretation. All activities under the EURARE project resulted in
knowledge upgrades for a number of REE mineralisations, as well as the discovery of new ones. Seve-
ral of the mineralisations clearly require further study. The present report provides a comprehensive
overview and introduction to REE potential in the bedrock of Sweden, and adds R&D value by raising
the REE economic geology perspective.

RARE EARTH ELEMENTS DISTRIBUTION, MINERALISATION AND EXPLORATION POTENTIAL IN SWEDEN R & M 146
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INTRODUCTION

Martiya Sadeghi, Nikolaos Arvanitidis, Magnus Ripa

This report presents compiled economic geology data and information on rare earth element (REE)
mineral resources in Sweden collected during the EURARE project. This project was carried out under
the European Commission (EC) FP7 programme to fund a consortium of 23 partners from Europe.
The project included work packages (WPs) on geological resources, mining and beneficiation, extrac-
tion and separation of the REE, and related legislation (Sadeghi et al., 2017a). The goals of the project
were (i) to characterise potential REE resources in Europe; and (ii) to investigate, develop, optimise
and demonstrate technologies for efhicient and economically viable exploitation of currently available
European REE deposits with minimum impact on the environment (www.eurare.org).

Current state-of-the-art processes for REE extraction use complicated, energy- and resource-inten-
sive technologies. REE mineral processing technologies currently used for representative European
REE ores will be investigated under the EURARE project. The project aims to improve these techni-
ques by adopting new approaches for complete ore utilisation, minimal environmental impact and by
establishing integrated mineral processing systems, with zero or close to zero tailings.

The EURARE project also seeks to demonstrate new sources for REE exploitation from industrial
metallurgical waste. This will not only be lucrative but will minimise the overall environmental foot-
print of the primary European metallurgical industry. The EURARE project managed to deliver and
establish a novel sustainable exploitation scheme for Europe’s REE deposits.

The Geological Survey of Sweden (SGU) was involved in WP1 (on geological resources). This work
package aimed to describe the potentially exploitable REE resources in Europe, focusing on countries
known to be promising REE target areas (i.e. Sweden, Norway, Finland and Greece). Work Package
1 also aimed to identify REE demand in Europe, both as a raw material and as intermediate products.

The data and knowledge compiled and created in WP1 are processed and elaborated through the deve-
lopment of an electronic Integrated Knowledge Management system (IKMS), which will lay the founda-
tions for a roadmap to both sustainable REE exploitation and REE material supply autonomy in Europe.

Rare earth elements

Chemically speaking, the rare earth elements (REEs) comprise the 15 lanthanides plus Sc and Y. In
normal geological usage, however, the REEs are confined to the lanthanides, and this approach is
adopted here. They form a key group of chemically similar metallic elements that are often used to
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study earth systems (Taylor & McLennan 1985; Prego et al. 2009). The REEs are commonly divided
into the light rare earth elements (LREEs), with lower atomic weights and larger atomic radii
(lanthanum to europium), and the heavy rare earth elements (HREEs), with higher atomic weights
and smaller atomic radii (gadolinium to lutetium). This gradual decrease of atomic radii with increa-
sing atomic number is a characteristic feature of REEs, and is known as the contraction of lanthanides.
Scandium and yttrium are often grouped with the REEs because they are chemically similar (Hedrick
1997; Walters et al. 2011). In particular, yttrium is often grouped with the HREEs because of its simi-
lar chemical properties (Samson & Wood 2004).

REE:s are not found as native elements but occur in a variety of minerals, e.g. oxides (fergusonite),
carbonates (bastnisite), phosphates (monazite), and silicates (allanite). Atleast 100 minerals are known
to incorporate REEs in their crystal structures, while approximately 10 of these minerals contain sig-
nificant REE concentrations. Currently, only bastnisite, monazite, and xenotime are primary REE-
bearing minerals of economic importance (Richardson & Birkett 1996).

REEs act incompatibly during most magmatic processes and thus concentrate in the final products
of magma differentiation and by low degrees of melting (e.g. evolved granites and pegmatites). REEs
have been considered relatively immobile during metamorphism and are not easily affected by altera-
tion in surficial environments (Ohlander et al. 1996). However, some studies have indicated that REEs
may be mobile during weathering processes, e.g. in till cover in northern Sweden (Ohlander et al. 1991,
1996) and in hydrothermal systems (MacLean 1988).

REE-bearing mineral deposits occur in a range of igneous, sedimentary, and metamorphic rocks.
Geological environments in which REEs are enriched can be broadly divided into two categories
(Walters et al. 2011): (i) primary deposits associated with igneous and hydrothermal processes; and (ii)
secondary deposits concentrated from primary sources by sedimentary processes and weathering.
Primary deposits include REEs associated with carbonatites and/or alkaline igneous rocks, REEs
associated with iron oxide-copper-gold (IOCG) deposits and hydrothermal deposits (unrelated to
alkaline igneous rocks). Secondary deposits include marine placers (including coastal dune deposits
formed by aeolian processes), alluvial placers, palaecoplacers, lateritic deposits, and ion-adsorption clays
(Walters et al. 2011).

The most significant economic concentrations of REE-bearing minerals worldwide are hosted in,
or associated with, alkaline igneous rocks and carbonatites. Within hydrothermal systems, REE-
bearing minerals are associated with quartz- and fluorite-bearing veins and occur as breccia-filling.
REE-bearing minerals also occur in skarns, in pegmatite and may be concentrated in placer and
laterite clay deposits.

Over the last few decades, rare earth metals have found many applications in metallurgy, elec-
tronics, the “high-tech” and “green tech” sectors, medicine, military, and many other areas of modern
life. This has greatly increased demand for these commodities (e.g. Haxel et al. 2002). There is
therefore a need to define the natural background levels of REEs in order to distinguish their crus-
tal variations related to geology and mineralisation from anthropogenic input and contamination
(Fedele et al. 2008).

From an economic viewpoint, another important factor in REE accessibility is the market and
current global geopolitical conditions. Earlier REE mines, such as the Mountain Pass Mine in
California, produced significant amounts of REE, but these shut down some time ago. At present,
China dominates the REE market, controlling over 95% of global supply. Hence, recent reductions
in Chinese REE export quotas have created considerable uncertainty about future global supply
(Moftett & Palmer 2012). As a result, more research on REEs is being conducted and new REE
exploration projects are starting worldwide, including the famous Mountain Pass Mine, which is to
be reopened (Wiens 2012).

EDITOR: MARTIYA SADEGHI
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Figure 1. Map of European REE mineral deposits and occurrences in Europe (Source: www.eurare.org).

Classification of rare earth element mineralisations in Europe

A brief summary of the main types of REE deposit is given here, following the definitions agreed to
by the EURARE WPl-partners (www.curare.org):

The EURARE project has recently released a brochure summarising European REE resources, inclu-
ding a map of REE mineral deposits and occurrences in Europe (source: EURARE project, Fig. 1).

o Alkaline igneous rock deposits: In the magmatic environment, REE deposits are typically asso-
ciated with alkaline igneous suites. Highly evolved alkaline/peralkaline igneous rocks host deposits
of rare earth elements, including Y, in addition to Zr, Hf, Nb, Ta, U, and Th. In highly peralkaline
magmas, REE-rich oxides, phosphates and/or silicates may be concentrated in certain horizons
within the magma chamber because of the incompatible behaviour of REEs. Alternatively, REEs
may be concentrated by late-stage magmatic-hydrothermal activity. Magmatic deposits/ prospects
can be subdivided into three types. The first is hosted by nepheline syenitic rocks of large, layered
alkaline intrusions, where the mineralisation commonly occurs in layers rich in REE-bearing
minerals, which mostly show cumulate textures (e.g. Thor Lake/Nechalacho, Canada; Ilimaussag,
Greenland; Lovozero, Russia; Kipawa, Canada; Norra Kirr, Sweden; Pilanesberg, South Africa).
The second type includes mineralisation in peralkaline granitic rocks where REE-bearing minerals

RARE EARTH ELEMENTS DISTRIBUTION, MINERALISATION AND EXPLORATION POTENTIAL IN SWEDEN R & M 146
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are usually disseminated. The mineralisation is typically hosted by pegmatites (including the
Nb-Y-F type), felsic dykes, and minor granitic intrusions (e.g. Strange Lake, Canada; Khaldzan-
Buregtey, Mongolia; Ghurayyah, Saudi Arabia; Bokan, Alaska, United States). The third type is
disseminated, very fine-grained, and hosted by peralkaline felsic volcanic/volcaniclastic rocks,
mostly of trachytic composition (e.g. Dubbo Zirconia and Brockman/Hastings, Australia; Dostal
2016). In general, REE deposits associated with alkaline igneous rocks are rather low grade, but may
have large tonnage and be relatively enriched in HREE (hosted in complex silicate REE minerals).

o Carbonatite deposits: Carbonatites (unusual magmas with >50% modal carbonate minerals) are

most commonly found in continental-rift tectonic environments, and often associated with alkali-
ne igneous rocks. These formed from low-degree mantle melts and may contain high concentrations
of REE to crystallise REE carbonates, REE fluorcarbonates (e.g. bastnisite) and REE phosphates
(monazite and xenotime). Carbonatites have been the primary source of niobium and REEs for
nearly 50 years. Although there are more than 500 known carbonatites in the world, only four
are currently mined for REEs: the Bayan Obo, Maoniuping, and Dalucao deposits in China, and
the Mountain Pass deposit in California (Verplanck et al. 2016). The carbonatite-associated depo-
sits predominantly comprise LREE-enriched REE minerals.

¢ Granite and pegmatite deposits: Rare-element granitic pegmatites represent highly concentrated

sources of rare metals, including Li, Rb, Cs, Be, Sn, Nb, Ta, Zr, Y, REE, and U. Deposits of this
type were among the first sources of REE to be exploited in the early twentieth century, e.g. the
Ytterby pegmatite in central Sweden. Whilst historically important, they are rarely promising
exploration targets due to their small tonnage and complex mineralogy. However, they often have
potential for by-products such as beryllium, fluorine and niobium (London 216).

e Vein and skarn (hydrothermal) deposits: Vein and/or skarn REE deposits are characterised by

mineralisation processes involving hotaqueous solutions forming REE-bearing veins and replacement
ore bodies (e.g. Bastnis and Riddarhyttan, central Sweden). The Bastnis (skarn)-type deposits, also
referred to locally as Fe oxide-REE-Cu (Co-Au-Bi-Mo; Holtstam et al. 2014), all occur within a belt
of mostly significantly altered felsic metavolcanic to metasedimentary rocks in the Nora—Riddarhyt-
tan—Norberg area of Bergslagen, which is called the “REE line” (Jonsson & Hégdahl 2013). Carbo-
natite and/or alkaline magmatic bodies may be spatially associated and act as a metal and/or source.
Examples of REE deposits where hydrothermal processes are found to have been important include

Bayan Obo (China), Nolans Bore (Australia), and Steenkampskraal (South Africa).

e Iron oxide-apatite deposits (IOA): Kiruna-type iron oxide-apatite deposits are generally associated

with volcanic and intrusive rocks of acidic to basic composition (Hitzman 2000). Notable examples
of Kiruna-type iron oxide-apatite deposits include Kiirunavaara, northern Sweden (Nystrom &
Henriquez 1994, Harlov et al. 2002a); Gringesberg, central Sweden (Frietsch & Perdahl 1995, Hall-
berg et al. 2006, Jonsson et al. 2010); and Blotberget (Jansson et al. 2014). In most of these deposits
monazite and xenotime inclusions are commonly found in the apatite prominent areas (typically
fluorapatite), which have experienced obvious fluid-induced alteration with (Y +REE) + Na + Si + Cl
depletion (e.g. Kiirunavaara, northern Sweden; Harlov et al. 2002a), with apatite serving as the
source of P + (Y+REE) (Harlov et al. 2005). Some iron-oxide copper gold (IOCG) deposits, such as
Olympic Dam, Australia, carry the mineral apatite, which has the potential to produce REE as a
by-product. REE-bearing apatite is currently treated as waste during iron ore processing.

¢ Placer deposits: Some REE-bearing minerals, such as monazite and xenotime, are relatively

resistant to weathering and can be transported by sedimentary processes. They may then become
concentrated in heavy mineral sand deposits, referred to as placers. Ancient and modern types of
sedimentary placer deposits formed in both alluvial and coastal environments have been significant
sources of the rare earth elements. The REE-bearing minerals in placer-type deposits are prima-

rily monazite [(Ce,La,Nd,Th)PO,], and sometimes xenotime (YPO,), which are high-density
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minerals that accumulate with the suite of heavy minerals (Sengupta & Gosen 2016). Placer
deposits can form in rivers, in arid environments (dunes), or in beach and shallow marine environ-
ments, e.g. Nea Peramos along the Aegean coast of northern Greece. Mineral sand mining opera-
tions in India, Malaysia and Australia, which mine cassiterite (Sn), rutile (T4), and/or zircon (Zr),
currently also stockpile monazite and/or xenotime, from which REEs can be produced as by-
products. This deposit type is also known from the geological record (palaco-placer) where sub-
sequent metamorphic processes may have upgraded the REE resource (e.g. Olserum, Sweden).

¢ Bauxite deposits: Bauxite ores are classified in three ways, based on genetic principles, geological
age and mineralogical composition (Valeton 1972). Two main classes of bauxites are: 1) those that
form on aluminosilicate lithologies; and 2) those that form on limestone, known as karst bauxites
(Bérdossy 1982). The bauxites on carbonate rocks (karst) have higher REE concentrations than
do other bauxites (Mordberg 1993). Accumulation of residual clay mineral during the weathering
of host rock in a tropical climate has the potential to generate near-surface bauxite deposits due
to crystallisation of authigenic REE-bearing minerals, accumulation of residual phases and the
adsorption of ions on clays and other mineral surfaces (Deady et al. 2014). The Mediterranean
bauxite deposits (e.g. central Greece) have the potential to produce REE as a by-product of alu-
minium production (Deady et al. 2016).

¢ Ion-adsorption deposits: lon adsorption-type rare earth element deposits are the world’s main
source of HREE and yttrium. Economic examples of the deposits are confined almost exclusi-
vely to areas underlain by granitic rocks in southern China. These deposits are termed “ion
adsorption-type” because the weathered granites contain more than ~50% ion-exchangeable REY
(REE +), relative to whole-rock REY (Sanematsu & Watanabe 2016). Ion-adsorption deposits
in Europe are a specific type of laterite deposit (EURARE 2017). They are formed by in situ che-
mical weathering of granitic rocks, resulting in adsorption of REE to clay mineral surfaces within
the laterite profile. The weatherable REE-bearing minerals, including fluorocarbonates, allanite,
and titanite, are the source minerals for the ion adsorption ores (Sanematsu & Watanabe 2016).
Such ion-adsorption clay deposits are typified by the occurrences in the Jiangxi, Guangdong,
Hunan, and Fujian provinces of southern China and, despite being low-grade, are important
sources of the more valuable HREE. These clay deposits are easily mined because the adsorbed
REE can be released from the clays by simple acid leaching methods using leachates such as
ammonium sulphate.

o Rare earth elements in sedimentary phosphorite deposits: Sedimentary marine phosphorites
are the world’s principal source of phosphorus for the fertiliser industry, and thus an essential
ingredient of modern agriculture. The availability of low-cost phosphorus has been fundamental
to the “Green Revolution,” which has allowed modern agricultural systems to meet increasing
food demands resulting from global population growth. Phosphate, a non-renewable commodity,
resides in “francolite” (an informal name for a carbonate-rich fluorapatite mineral) that has been
periodically deposited as a constituent of seafloor sediment in areas covering thousands of square
kilometres at continental and sedimentary basin margins, forming enormous deposits in the
process. The REE assessment described here relates to marine phosphorite deposits formed along
passive and convergent continental ocean-basin margins and marginal to cratonic epeiric ocean
basins; it does not include marine insular and seamount deposits. Phosphorite is a marine sedi-
mentary rock in which phosphate minerals are the major constituents (more than -18% P,Os;
Cathcart 1980b). The principal gangue or diluent minerals in all marine phosphorite deposits are
quartz, carbonate minerals (calcite and dolomite), clay minerals (i.e. montmorillonite, illite,
chlorite, and kaolinite), and Fe oxide minerals (goethite, hematite, limonite). Organic matter is a
further constituent of many deposits. These diluents affect processing and chemical uses of the

phosphorite (Cathcart 1980a).
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THE GEOLOGY OF SWEDEN

Magnus Ripa

The following description of the geology of Sweden is modified from Stephens (1988), Lindstrom et
al. (2000) and Stephens & Weihed (2013).

The Fennoscandian Shield (Koistinen etal. 2001) is overlain by mostly platformal sedimentary rocks
and the Palaeozoic Caledonian orogen, and these form the three major tectonic components in the
bedrock of northern Europe, including Sweden (Stephens et al. 1997). In its northeastern part, predo-
minantly outside Sweden, the shield is composed of a collage of Archaean cratons (Gaal & Gorbatschev
1987; Daly et al. 2006; Holttd et al. 2008) with Palaeoproterozoic cover rocks, and to the southwest,
including Sweden, accreted magmatic domains and sedimentary basinal material (Gaal & Gorbatschev
1987; Bingen et al. 2008; Lahtinen et al. 2008). All these tectonic components were progressively
amalgamated over a period of more than one billion years during the Proterozoic.

The Fennoscandian Shield contains abundant mineral resources and several ore districts, and
Palacoproterozoic assemblages in particular are host to many major mineral deposits of various types.
The rocks of the Caledonides also contain various mineral deposits.

Tectonic setting

The Fennoscandian Shield in Sweden predominantly comprises three orogens: the Svecokarelian
orogen in the north and east of the country and the Blekinge—Bornholm and Sveconorwegian orogens
in the far southeast and southwest, respectively (Fig. 2). The bedrock in the largest orogenic system
—the Svecokarelian orogen at 2.0-1.8 Ga— ceased to be affected by ductile deformation, metamorphism
and associated magmatic activity, and started to react to crustal deformation in a brittle manner around
1.8-1.7 Ga (Viola et al. 2009; Saintot et al. 2011). The bedrock inside the other orogens approached a
cratonic condition at 1.5-1.4 Ga (Danopolonian orogeny) and at 1.1-0.9 Ga (Sveconorwegian orogeny),
respectively. Rocks and structures belonging to older orogenic systems are preserved in the far north
of Sweden inside the Svecokarelian orogen (c. 2.7 Ga orogenic event), inside the Blekinge—Bornholm
orogen (1.8 Ga) and inside the Sveconorwegian orogen (1.9-1.8 Ga, 1.7 Ga, 1.6-1.5 Ga, referred to as
Gothian, and 1.5-1.4 Ga, referred to as Danopolonian and Hallandian). The rocks and structures
formed during these older orogenic events were more or less reworked by the deformation and meta-
morphism associated with each of the younger orogenic systems.
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Figure 2. Simplified bedrock geological map of Sweden (modified from Stephens & Weihed 2013). The image was genera-
ted using the 1:1 million national bedrock database for Sweden at the Geological Survey of Sweden (SGU). GDG = granitoid-
dioritoid-gabbroid, GP = granite-pegmatite, GSDG = granite-syenitoid-dioritoid-gabbroid. The position of the major ore
districts (Bergslagen, Caledonides, Skellefte, Norrbotten) and the “Gold Line” of the Svecokarelian orogen are indicated.

RARE EARTH ELEMENTS DISTRIBUTION, MINERALISATION AND EXPLORATION POTENTIAL IN SWEDEN R & M 146

13



14

Well-preserved, magmatic and sedimentary rocks, formed around 1.7 Ga, 1.6-1.4 Ga, 1.27-1.25 Ga
and 0.98-0.95 Ga, represent a volumetrically subordinate component in the Fennoscandian Shield in
eastern Sweden (Fig. 2). These rocks intrude or lie unconformably on top of the rocks belonging to the
Svecokarelian orogen, and are situated tectonically in the foreland to both the Blekinge—Bornholm
and Sveconorwegian orogens.

The Svecokarelian orogen (2.0-1.8 Ga)

Syn-orogenic rocks that formed at 2.0-1.8 Ga, included in the Svecofennian Domain by Gaal & Gor-
batschev (1987), predominate inside the Svecokarelian orogen in Sweden (Fig. 2). In the far north of
the country, deformation and metamorphism at 2.0-1.8 Ga also affected pre-orogenic (with respect
to the Svecokarelian orogeny), Archaean gneissic and granitic basement as well as Palacoproterozoic
(2.4-2.0 Ga), predominantly supracrustal cover rocks (Fig. 2), all included in the Karelian Province
by Gaal & Gorbatschev (1987).

Synorogenic Svecokarelian volcanic (1.91-1.89 Ga) and older supracrustal rocks were intruded by
several different suites of igneous rocks that can be distinguished using a combination of compositio-
nal trend, intrusion-deformation relationships and absolute age (Fig. 2). Three compositional suites
have been identified, referred to as the granitoid-dioritoid-gabbroid (GDG), granite-syenitoid-dioritoid-
gabbroid (GSDG) and granite-pegmatite (GP) intrusive rock suites by Stephens etal. (2009). Mingling
relationships between rocks with felsic composition and rocks with more primitive compositions are
a conspicuous feature of the intrusive rocks in the GDG and GSDG suites. The GP plutonic rocks are
mainly granitic in composition.

The Pajala shear zone (Kirki et al. 1993; Bergman et al. 20006a) in the far northeast of Sweden is a
deformation belt that is up to 40 km wide at the ground surface and trends in a north—south direction.
It marks a distinctive lithological boundary inside the Svecokarelian orogen. The bedrock to the west
of the zone predominantly comprises syn-orogenic, Palacoproterozoic (2.0-1.8 Ga) rocks overlying
pre-orogenic, Archaean basement and Palacoproterozoic (2.4-2.0 Ga) cover rocks (Fig. 2). In contrast,
the bedrock to the east of this zone, in Finland, Norway and northwestern Russia, belongs to the part
of the orogen dominated by pre-orogenic rocks.

Further to the southwest in northernmost Sweden, Ohlander et al. (1993) and Mellgvist et al.
(1999) identified a boundary separating Palacoproterozoic rocks derived in part from Archaean crust
to the northeast from juvenile Palacoproterozoic crust without an Archaean input to the southwest.
The character and spatial position of this boundary are poorly constrained. However, its occur-
rence is conceptually consistent with the interpretation of reflection seismic data from beneath the
Bothnian Bay (BABEL Working Group 1990, 1993; Korja & Heikkinen 2005, 2008). On the basis
of these considerations, the Svecokarelian orogen north of the Hasselo Shear Zone (Fig. 2) has been
divided into three lithotectonic domains: the Norrbotten lithotectonic domain (NLD), the Peripo-
hja lithotectonic domain (PLD), and the Bothnia-Skelleftea lithotectonic domain (BSLD), respec-
tively. Since Archaean material at deeper crustal levels has been inferred to be present in the south-
ern part of the BSLD (Andersson et al. 2011), some care is needed in interpreting the broader
tectonic significance of this division.

The Svecokarelian orogen in the near-surface realm south of the Hasselo Shear Zone is composed
entirely of syn-orogenic, Palacoproterozoic (1.9-1.8 Ga) rocks (Fig. 2), whereas slightly older, juvenile
Palacoproterozoic crust has been inferred to predominate at deeper crustal levels (Andersson et al.
2011). The rocks are transected by several ductile shear zones or combinations of zones that form
broader shear belts up to several tens of kilometres thick in places (Fig. 2). The shear zones are gene-
rally steeply dipping and trend predominantly west-northwest—east-southeast. Together with major
folds between these zones, they contribute to a significant transposition of bedrock units into a predo-
minantly west-northwest to east-southeast direction (Fig. 2). The Svecokarelian orogen in the southern
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half of the country has been divided into three separate lithotectonic domains (Fig. 2), the boundaries
between which are defined by ductile shear zones. These are the Ljusdal lithotectonic domain (LLD),
the Bergslagen lithotectonic domain (BLD) and the Smaland lithotectonic domain (SLD).

Cyclic magmatic activity, sedimentation and deformational-metamorphic events

The syn-orogenic rocks in the various lithotectonic domains in the Svecokarelian orogen share many
characteristics, but the proportions of the different rock types change inside the different domains
(Fig. 2). Cycles of magmatic activity and sedimentation, lasting up to 40—50 million years, are a cha-
racteristic feature of the orogenic development. These cycles include and are separated by short periods
of ductile transpressive deformation. Metamorphism under low pressure and, in large areas, amphi-
bolite and even granulite facies conditions prevailed during and after crustal shortening.

The oldest cycle with magmatic activity is dated at 1.95-1.93 Ga, and occurs in a small area southwest
of Skellefted in the BSLD (Fig. 2). The volumetrically most conspicuous cycle consists of predomi-
nantly rhyolitic or dacitic, 1.91-1.89 Ga volcanic and subvolcanic rocks. These are sandwiched between
siliciclastic sedimentary rocks and intruded by a calc-alkaline GDG suite at 1.89-1.88 Ga north of the
Hassel Shear Zone (Fig. 2) and at 1.90-1.87 Ga south of this zone. Many of the mineral deposits in
Sweden are spatially associated with the magmatic activity during this cycle when a transtensional or
extensional tectonic environment prevailed (Allen et al. 1996a, 1996b; Stephens et al. 2009). All these
rocks were affected by a short pulse of transpressional ductile deformation and the initial stages of
metamorphism at 1.88-1.87 Ga north of the Hasselo Shear Zone (Bergman et al. 2001; Kathol &
Weihed 2005; Skyttd et al. 2012) and a little later at 1.87-1.86 Ga in the domains along and south of
this zone (Hermansson et al. 2008a; Hogdahl et al. 2009).

A part of a third cycle of magmatic activity and deposition of siliciclastic sedimentary rocks is con-
spicuous in the BSLD and NLD at 1.88-1.86 Ga and, more extensively, at 1.87-1.83 Ga in the LLD
south of the Hasselé Shear Zone (Fig. 2). Magmatic activity belonging to this cycle is also present
further south. It is apparent that the rocks in this cycle started to form during the 1.88-1.86 Ga trans-
pressional event and, at least in the LLD, continued during a second period of transtension or exten-
sion between 1.86 and 1.83 Ga (Bergman et al. 2008). The intrusive rocks in this cycle are locally
discordant to structures formed during the earlier deformational evolution but, at least in the domains
south of the Hassel6 Shear Zone, were affected by deformation and metamorphism around 1.83-1.82
Ga. Ductile strain also formed around 1.8 Ga along the shear belts (e.g. Beunk & Page 2001; Hogdahl
& Sjostrom 2001; Hermansson et al. 2008b). The intrusive (and equivalent volcanic) rocks in the third
cycle belong predominantly to a GSDG suite showing an alkali-calcic trend and a shoshonitic com-
position. Locally, rocks belonging to a calc-alkaline GDG intrusive suite are also present.

A fourth cycle of magmatic activity and deposition of siliciclastic sedimentary rocks, included in
the older group of rocks in the Transscandinavian Igneous Belt (Patchett et al. 1987; Larson & Berglund
1992; Hogdahl et al. 2004), marks the final phase in the Svecokarelian orogenic evolution at 1.83-1.78
Ga. This cycle is conspicuous at the ground surface in the Smaland lithotectonic domain, but similar
magmatic activity occupies large areas in the near-surface realm in most of the other lithotectonic
domains (Fig. 2). Many of the intrusive rocks that belong to this cycle are isotropic and contacts are
discordant to structures formed during earlier deformational events. However, ductile deformation
and metamorphism under greenschist facies conditions occur along a broad belt with a west-northwest
to east-southeast or northeast to southwest trend in the central part of the SLD. The intrusive (and
equivalent volcanic) rocks in the fourth cycle are similar in composition to the rocks in the third cycle.

The Svecokarelian orogen in Sweden is inferred to have formed along an active continental margin
in a convergent plate boundary setting between 2.0 and 1.8 Ga. Accretionary orogenic activity related
to ongoing subduction processes (Cawood et al. 2009) prevailed, involving both longer periods of
retreating and shorter periods of advancing, easterly-directed subduction (Hermansson et al. 2008a;
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Stephens et al. 2009). The palacotectonic setting corresponds to the current circum-Pacific orogenic
system (Brown 2009) and builds on earlier pioneering work on the Fennoscandian Shield by Hietanen
(1975), Gaal (1982) and Park (1985), for example. Alternative tectonic models invoking both accretio-
nary and terminal (1.8 Ga) continental collisional tectonics, in a setting equivalent to the current
Alpine—Himalayan—Indonesian orogenic system (Brown 2009), have also been proposed (e.g. Nironen
1997; Lahtinen et al. 2005, 2008; Korja & Heikkinen 2008), but are not adopted here.

The Blekinge—Bornholm orogen (1.5-1.4 Ga)

The bedrock in the Blekinge—Bornholm orogen (Fig. 2) predominantly comprises magmatic rocks
that formed along a 1.8 Ga active continental margin in a convergent plate boundary setting. However,
it differs from the bedrock further north in the SLD, since it was affected by a younger orogenic event
at 1.5-1.4 Ga (Celys 2004), referred to as Danopolonian. This younger event is expressed by ductile
deformation and amphibolite facies metamorphism as well as by synorogenic magmatic activity, with
the crystallisation of a suite of granites and syenitoids around 1.45 Ga. Some uncertainty remains
concerning the presence of earlier deformation and metamorphism at 1.8—1.7 Ga similar in age to the
main bedrock component (e.g. Johansson et al. 20006).

The Sveconorwegian orogen (1.1-0.9 Ga)

In southwestern Scandinavia the bedrock shows evidence of an accretionary to terminal collisional tec-
tonic events at 1.1-0.9 Ga (Fig. 2). In Sweden these events involved subduction of continental lithosphe-
re, with the development of eclogite and high-P granulite. The different tectonic events in this time
interval belong to the Sveconorwegian orogeny (Berthelsen 1980; Bingen et al. 2008), and the volume of
bedrock affected by them is referred to as the Sveconorwegian orogen (Fig. 2). A significant feature of
this orogen in Sweden is the predominance of pre-orogenic crustal material, including not only magma-
tic rocks formed at 1.3-1.2 Ga and sedimentary cover rocks formed after 1.3 Ga in the Idefjorden terrane
(Fig. 2), but also reworked basement from older accretionary orogenies. Orogenies active at 1.9-1.8 Ga
(Svecokarelian), around 1.7 Ga and at 1.5-1.4 Ga (Danopolonian and Hallandian) have been reworked
in the Eastern Segment and at 1.6-1.5 Ga (Gothian) in the Idefjorden terrane (Fig. 2).

Post-Svecokarelian rocks in the foreland to the Blekinge—Bornholm and Sveco-
norwegian orogensWW

Well-preserved volcanic and sub-volcanic rocks, interlayered siliciclastic sedimentary rock and an
alkali-calcic intrusive suite containing granite, quartz syenite and monzodiorite, which all formed
around 1.7 Ga, occur in west-central Sweden (Fig. 2). These rocks belong to the younger group of rocks
in the Transscandinavian Igneous Belt. The boundary between these rocks and the surrounding bed-
rock in the Svecokarelian orogen is either a primary intrusive contact or an angular unconformity.
Locally, deformation along a ductile shear zone affected this rock suite during the development of the
magmatic rocks (Bergman et al. 2006b). Otherwise, the rocks are unaffected by ductile strain. Geo-
chemical data indicate formation along an active continental margin in a convergent plate boundary
setting (Nystrédm 1982, 2004), and the 1.7 Ga suite represents a high crustal level inside a spatially,
poorly constrained accretionary orogenic system with, once again, an inferred easterly-directed sense
of subduction (Bergman et al. 2006b).

Mesoproterozoic magmatic rocks, formed at 1.6-1.5 Ga, are conspicuous in central Sweden (Fig. 2).
They consist of granite with rapakivi texture and quartz syenite, spatially associated with gabbro,
anorthosite and monzodiorite (Andersson 2001). These rocks are overlain by siliciclastic sedimentary
rock and basalt (Fig. 2), the latter inferred to have formed around 1.48-1.46 Ga (S6derlund etal. 2005).
Predominantly basic dykes with a west-northwest to east-southeast trend that formed at 1.6 Ga (Soder-
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lund et al. 2005; Stephens et al. 2009), as well as isolated intrusive bodies of nepheline syenite, proba-
bly Mesoproterozoic in age, and 1.45 Ga granite (Kresten & Chyssler 1976; Friese et al. 2012) are also
present in the southeast of the country (Fig. 2). A far-field intracratonic response to the Gothian oro-
genic event, preserved to the west inside the Sveconorwegian orogen, has been proposed for the 1.6-1.5
Ga magmatic activity (Ahall et al. 2000). A similar foreland response to the Danopolonian orogenic
event in the Blekinge-Bornholm orogen can also be inferred for the formation of the
1.5-1.4 Ga rocks.

Mesoproterozoic (1.27-1.25 Ga) dolerite sills and dykes as well as Neoproterozoic (0.98-0.95 Ga)
dykes and subordinate clastic sedimentary rock (Soderlund et al. 2005) completed the tectonic evolu-
tion in the Fennoscandian Shield in Sweden (Fig. 2). These rock suites are related to separate intracra-
tonic rifting events in the foreland to the Blekinge—Bornholm and Sveconorwegian orogens.

The Caledonian orogen (0.5—-0.3 Ga)

The Scandinavian Caledonides (Fig. 2) are characterised by mostly flat-lying thrust sheets or nappes. The
rocks of these sheets are dominated by original sedimentary, late Proterozoic to early Palacozoic succes-
sions that formed on the margin of the Fennoscandian Shield and in the Iapetus Ocean. The thrust sheets
also include mafic dykes, ultramafic (largely sepentinised) intrusive bodies and pieces of crystalline
basement of the Fennoscandian Shield and of exotic terranes. During closure of the Iapetus Ocean the
thrust sheets were transported eastwards (present day coordinates) onto the Shield and each other.

Mineral resources

Sweden has had an extensive mining and mineral processing industry for over 1,000 years, and docu-
mented mining dates back to the 8th century AD. Important types of ore deposit include volcanoge-
nic massive sulphide deposits (Cu-Zn-Pb-Au-Ag or Zn-Pb-Ag), volcanic- and carbonate- or skarn-
hosted, replacement-type Zn-Pb-Ag-(Cu-Au) sulphide and Fe oxide deposits, Fe oxide-apatite deposits,
Cu-Au deposits hosted by intrusive rock, and orogenic Au deposits. Alongside these well-documented
deposits, new types of deposit are being explored, e.g. Fe oxide-Cu-Au (IOCG) deposits and REE, Li,
Te and other deposit types (Weihed et al. 2005).

No economic or major mineral deposits have been discovered in the Archaean rocks in Sweden. The
major ore deposits are hosted by Palacoproterozoic assemblages belonging to the BLD, BSLD and
NLD in the Svecokarelian orogen. Each of these domains is dominated by one or more of the important
ore types identified above, and mineral resources in Sweden are described below according to their
location in the lithotectonic framework and ore type.

Volcanogenic massive sulphide (VMS) deposits are currently the most mined base metal ore type in
Sweden. Four deposits are currently mined in the Skellefte ore district (Kankberg, Maurliden, Kristi-
neberg and Renstrém), which is situated inside the BSLD (Fig. 2). The VMS deposits in the Skellefte
ore district are composed of lenses of semi-massive to massive sulphides with Cu, Zn, Pb, Au and Ag,
hosted mainly in the upper part of predominantly felsic, submarine volcanic arc rocks (Allen et al.
1996a). Recent studies (unpublished Boliden AB report, Bauer et al. 2013) have shown that the ores
display a close spatial relationship with early syn-volcanic faults. The most recently opened mine in this
area, Kankberg, is an Au-Te deposit, the first Te mine in Sweden. The famous Au-rich, VMS Boliden
deposit is also located in the Skellefte District (Bergman, Weihed et al. 1996; Mercier-Langevin et al.
2013). Apart from the VMS deposits, Au deposits hosted by intrusive rock, including the operating mine
at Bjorkdal (Weihed et al. 2003), Cu-Mo-Au porphyry-style deposits and Cu-Ni deposits hosted by
mafic intrusive rock are also present. Intrusion-hosted porphyry and Au deposits formed approxima-
tely 10 million years after the VMS deposits, during basin inversion (Skyttd et al. 2012) and a shift from
general extension to compression of the volcanic arc at 1.88-1.87 Ga (Bejgarn et al. 2013).
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Various types of ore deposit are present in the Bergslagen ore district in south-central Sweden (Fig.
2), including several thousand Fe oxide and polymetallic base metal sulphide deposits (Stephens et al.
2009). The district is situated predominantly inside the BLD (Fig. 2). However, the westernmost part
of it shows ductile strain along Sveconorwegian shear zones and has been included in the frontal part
of the Sveconorwegian orogen (Fig. 2). Three deposits are currently mined in this district: Zn-Pb-Ag-
(Cu-Au) sulphide deposits at Garpenberg, a Zn-Pb-Ag sulphide deposit with subordinate Cu at Zink-
gruvan and a Zn-Pb-Ag sulphide at Lovisagruvan.

Stratiform, tabular-shaped Zn-Pb-Ag ore at the Zinkgruvan operating mine is hosted by felsic ash-
siltstone volcanic rock with intercalations of carbonate rock, skarn, chemical sediment and mafic rock,
all affected by upper amphibolite facies metamorphism (Hedstrom etal. 1989; Allen etal. 1996b; Stephens
etal. 2009). Veins and disseminations of Cu mineralisation are hosted by the carbonate rock. The under-
lying felsic volcanic rocks are hydrothermally altered and metamorphosed, and the ore deposit is overlain
by migmatitic paragneiss. In contrast, a more typical feature of the Bergslagen district is a spatial asso-
ciation between Zn-Pb-Ag-(Cu-Au) sulphide deposits and Fe oxide deposits, all hosted by crystalline
carbonate rock or skarn in extensive successions of metamorphosed and hydrothermally altered felsic
volcanic rock (Allen et al. 1996b; Stephens et al. 2009). Examples include Garpenberg, Stollberg and
Dannemora. Kiruna-type Fe oxide-apatite deposits are also present (e.g. Gringesberg).

A variety of processes have been inferred to explain the formation of the sulphide and Fe oxide
deposits in Bergslagen, all of which have a common spatial association with magmatic activity around
1.91-1.89 Ga. Volcanogenic exhalative and synvolcanic replacement-type sulphide and Fe oxide skarn
deposits, and contact metasomatic Fe oxide skarn deposits have all been identified (e.g. Geijer 1917;
Geijer & Magnusson 1944; Hedstrom et al. 1989; Ripa 1988, 2012; Jansson & Allen 2011, 2013; Jans-
son et al. 2013). A magmatic or magmatic-hydrothermal origin for the magnetite in the Fe oxide-
apatite deposit at Gringesberg has been proposed (Jonsson et al. 2013).

Important Fe oxide and Cu-Au ore deposits occur in a major ore district inside the NLD in northern-
most Sweden (Fig. 1). Based on the style of Fe oxide and Cu-Au mineralisation and the extensive
albite and scapolite alteration, the region has been regarded as a typical IOCG province (e.g. Martins-
son 2001; Niiranen et al. 2007). Five major types of deposit occur: iron formations including typical
BIF deposits (e.g. Tornefors); stratiform Cu-Fe deposits (e.g. Viscaria); Kiruna-type Fe oxide-apatite
ores (e.g. Kiirunavaara, Malmberget); intrusion-related Cu-Au mineralisation (e.g. Aitik, cf. Wanhai-
nen et al. 2003); and shear- and vein-style Cu-Au deposits (e.g. Nautanen). In strictly genetic terms,
only some of these ore types can be classified as typical Fe oxide-Cu-Au (IOCG) deposits; others only
share a few characteristic features with this rather loosely defined ore class (cf. Hitzman et al. 1992;
Hitzman 2000). The Kiruna-type, Fe oxide-apatite deposits have also been interpreted as magmatic
or magmatic-hydrothermal occurrences (Nystrom & Henriquez 1994). The smaller Gruvberget, Leve-
dniemi and Mertainen Fe oxide deposits also recently came into production or are currently at an
advanced stage of feasibility studies.

Orogenic gold deposits have been identified in several of the lithotectonic domains in the Sveco-
karelian orogen north of the Hasselé Shear Zone. Recent discoveries of orogenic gold deposits sout-
hwest of the Skellefte District (Fig. 2) in the BSLD have focused much attention on the “Gold Line”
(Bark & Weihed 2012), with one mine (Svartliden) recently closed and several prospects at varying
degrees of maturity. Age data on orogenic gold mineralising events are scarce, but it is possible to
constrain two major periods of mineralisation at 1.90-1.86 Ga and 1.85— 1.79 Ga (Eilu & Weihed
2005). The age data appear to define a rough zonation from northeast to southwest, which seems to
be related to the apparent progressive growth of the Fennoscandian Shield over time in this direction.
In northernmost Sweden, Pahtohavare (Lindblom et al. 1996) has been described as an orogenic gold

deposit, although the high Cu content and saline mineralising fluids are more akin to IOCG deposits
(Weihed 2001; Weihed et al. 2005).

EDITOR: MARTIYA SADEGHI



Some gold deposits south of the Hasselé Shear Zone have been described with alternative genetic
models. For example, Endsen (Hallberg 1994) has been interpreted as a metamorphosed epithermal
deposit.

The autochthonous Ediacaran (c. 590-570 Ma) to Lower Cambrian sandstones at the present eastern
erosional front of the Scandinavian Caledonian mountains (Fig. 2) host several Pb-Zn deposits, one
world-class example of which is at Laisvall (Saintilan et al. 2015). The mineralisations are epigenetic
and formed during the Middle Ordovician in response to early far-field Caledonian deformational
events (Saintilan et al. 2015).

Allochthonous Ediacaran sedimentary rocks in the Caledonian nappes (Fig. 2) locally contain
Ni-bearing serpentinites, some of which are being, or recently have been, evaluated for exploitation
(see www.nickelmountain.se).

The uppermost Caledonian nappes (Koli; Fig. 2) are exotic terranes with local mineralisation such
as the Ordovician Stekenjokk-Levi Zn-Cu (-Pb) volcanogenic massive sulphide deposit (Stephens 1986).
Other types of metal occurrence in Sweden include REE, Li, Mo, Sn, W, Ti-V, Ni-Cu (-PGE) and U.
Recent global interest in REE mineralisation has resulted in fairly intense exploration for these metals
in Sweden. One of the most promising prospects is the Norra Kérr deposit, with high grades of HREE,

in southern Sweden. This deposit is associated with a Mesoproterozoic nepheline syenite.
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REE MINERALISATIONS IN SWEDEN

Erik Jonsson, Per Nysten, Torbjorn Bergman, Martiya Sadeghi, Johan Soderhielm & Dick Claeson

The following chapter summarises known mineralisations with “significant” contents (a concept which
is rather subjective and variable) of the rare earth elements. Some of these are fairly well known and
studied, whereas others have only been noted briefly during earlier exploration work, as well as during
this project.

The chapter sections are based on the overall classifications of the deposit types, starting with the
direct magmatic (orthomagmatic) types, chiefly represented by intrusive rock-hosted mineralisations,
i.e. granitic/granite pegmatitic, alkaline/syenitic, and carbonatitic ones. A contrasting but common
general type of occurrence in Sweden are REE mineralisations hosted by, or directly associated with,
different types of iron oxide ores. These range from the apatite-iron oxide ores (or Kiruna-type deposits),
which are relatively clear-cut in terms of their classification (although still genetically debated and could
also be included in the orthomagmatic group), via skarn-hosted iron oxide mineralisations in central
Sweden (the Bastnis-type deposits), to individual deposits or groups of deposits, whose classification
and/or origins are somewhat less clear or are undergoing study. The latter include the hydrothermal vein
deposits found in the Olserum area in southeastern Sweden, as well as several other deposits, mainly
within or near the Bergslagen ore province in south central Sweden. Several occurrences of U-rich,
REE-bearing minerals have been identified in quartzite-dominated Palacoproterozoic metasedimentary
successions in southeastern Sweden. These are interpreted to represent palacoplacer-type original con-
centrations of heavy mineral sands. There are also occurrences associated with Phanerozoic “alum” shales
and phosphorites in Sweden, such as in the Tésjo area (Fig. 3).

REE mineralisation in granitic pegmatites and granitoids

Granitic pegmatites, typically of a moderately to highly fractionated character, often host variable
amounts of minerals rich in rare or uncommon metals, including Be, Li, Nb, Ta, Sn, U, Th and the
rare earth elements (REE). Numerous fields of rare metal-enriched pegmatites occur in the Protero-
zoic bedrock of Sweden, having formed during an extended time interval (around 1 G.y.). Several
hundred of these pegmatite dykes have been quarried or mined on small to relatively extensive scales
over time, mainly for quartz and feldspar (Fig. 4), but sometimes also for mica, and in a few cases also
for other minerals and metals, such as apatite, beryl, bismuth, and REE minerals (cf. Sundius 1952,
Lundegérdh 1971).
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Figure 3. Simplified map of the bedrock geology of Sweden, with a selection of REE deposits, prospects and occurrences.

RARE EARTH ELEMENTS DISTRIBUTION, MINERALISATION AND EXPLORATION POTENTIAL IN SWEDEN R & M 146 21



22

@ REE-enriched granite

B Granitic pegmatite occurrence

[ ] ‘Ytterby

I

Figure 4. Major granitic pegmatite quarries and occurrences of REE-mineralised granitoids in Sweden.
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Study and research on granitic pegmatites and their minerals has along history in Sweden, featuring,
among others, the discoveries leading up to the description of the first known rare earth element
(“yttria”; later to be known as a mixture of yttrium and others) from the Ytterby pegmatite (Fig. 4) in
the late 18th century (Gadolin 1794), and more extensive and broader studies centred on the Falun
pegmatite field (Fig. 4), in the early 19th century (e.g. Hisinger & Berzelius 1806, Hedenberg 1806,
Gahn & Berzelius 1815, Berzelius 1815), including the publication of one of the earliest maps of a rare
element-bearing granitic pegmatite dyke (Gahn et al. 1818).

Most relevant in the rare earth element context are granitic pegmatites of the abyssal, muscovite,
and rare-element classes (based on the benchmark classification by Cerny 1991; e.g. also London 2008).
The latter class includes dykes and fields belonging to the NYF (Niobium-Yttrium-Fluorine) and LCT
(Lithium-Cesium-Tantalum) families (cf. Cerny 1991, Cerny & Ercit 2005, and references therein).
Of these, the NYF family of the rare-element class is overall the most relevant one in terms of potential
REE exploitation. Notably, many of these specific pegmatites are particularly enriched in the heavy
REEs, including yttrium, and in a few cases, also scandium. However, for the sake of completeness,
major LCT fields are also referred to briefly below.

The granitic pegmatites in Sweden have been the focus of quite extensive exploration and exploita-
tion over time, whereas the little-studied (in the context of metal exploration) rare element-enriched
granites and granitoids have not. Few occurrences have received much or any attention in terms of
their metal potential, and what is known or can be surmised about their overall grades is generally not
encouraging. One notable exception to this is the so-called “RA-granite” in Balltorp and the greater
Molndal area, southwestern Sweden (Fig. 4), which locally exhibits relatively high REE content. The
RA-granite isa Be-F-Nb-REE-Sn-Ta-Th-U-Zr-anomalous gneissic granite that does show some poten-
tial, but which has so far not been systematically explored (cf. Holmqvist 1989, and references therein).
Moreover, several other granitic to syenitic rocks in southern Sweden and elsewhere exhibit increased
REE contents. A contrasting case to these primary enrichments is the granitoid-hosted but epigenetic,
shear zone-related mineralisation at Néveran in Jimtland, central Sweden (Fig. 4).

Although quite variable between different occurrences and fields, important primary host minerals
(or mineral groups) for REEs in the rare element pegmatites of Sweden comprise aeschynite-(Y) to
polycrase-(Y), allanite-(Ce), allanite-(Y), euxenite-(Y), fergusonite-(Y), Y-dominant thalenite-yttrialite,
gadolinite-(Y), monazite-(Ce), samarskite-(Y), yttrotantalite-(Y) (as well as the chemically similar
ishikawaite-formanite), and xenotime-(Y)( Table 1). Since many of them often host significant quantities
of uranium (and/or thorium), they are typically metamict, and may also have undergone extensive
alteration relating to, and post-dating, this process (Fig. 5).

Table 1. Important REE minerals in granitic pegmatites in Sweden

Mineral General formula Mineral General formula
Aeschynite-(Y) (Y,HREE,Ca,Fe, Th)(Ti,Nb),(O,0H), Monazite-(Ce) (Ce,LREE)(PO,)

Allanite-(Ce) Ca(Ce,REE)Fe?*Al,[SiO,][Si,0,]O(OH) Polycrase-(Y) (Y,HREE,Ca,Ce,U,Th)(Ti,Nb,Ta),O
Allanite-(Y) Ca(Y,REE)Fe2*Al,[Si0,][Si20,]O(OH) Samarskite-(Y) (Y,HREE,Fe,U,Th,Ca)(Nb,Ta,Ti)04
Euxenite-(Y) (Y,HREE,Ca,Ce,U,Th)(Nb,Ta,Ti),O¢ Tengerite-(Y) (Y,REE),(CO;), * 2-3H,0
Fergusonite-(Y) (Y,HREE)NbO, Thalenite-(Y) (Y,HREE);Si5040(F,OH)
Fluocerite-(Ce) (Ce,La,LREE)F; Thortveitite (Sc,Y),Si,0;

Gadolinite-(Y) (Y,REE,),FeBe,Si,0;4 Xenotime-(Y) (Y,HREE)(PO,)

"Hjelmite” Heterogeneous mixture, Y+HREE-rich Yttrialite-(Y) (Y,HREE),Si,0,

Keiviite-(Y) (Y,Yb,HREE),Si,0, Yttrotantalite-(Y) (Y,HREE,Ca,Fe)(Ta,Nb)O,
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High primary content of uranium and/or thorium has thus led to extensive metamictisation of such
primary pegmatite minerals. Subsequent alteration and fracturing of both minerals and their surroun-
ding host rocks is also common, on micro to outcrop scale (Figs. 5, 6). Locally, primary REE minerals

may also have been affected by one or several stages of later fluids, with effects including alteration and
the formation of low-temperature secondary minerals, such as tengerite-(Y), and allied carbonates.
The occurrence, distribution and detailed mineralogy of the latter type of phases are little studied and
hence poorly known. In a few cases, local co-enrichment of scandium in these pegmatite systems is
also evident from the appearance of thortveitite, often intimately associated with HREE-rich oxides
or silicates. These represent the only known occurrences to date of minerals with essential scandium
in Sweden.

EDITOR: MARTIYA SADEGHI

Figure 5. Back-scattered electron
(BSE) scanning electron micro
scope image of a radioactive and
hence metamict Y-HREE-U-Ti-Nb
oxide from the Flintgruvan (1)
pegmatite, Dalarna
(6694334/522455), which has
experienced extensive, probably
fluid-mediated alteration. The
light grey to nearly white fields
represent remnants of the
metamict “original” mineral,
which has been largely replaced
by a darker phase along gently
curving fracture networks. These
arein turn partly infilled with a
very BSE-light/white phase, a
late-formed radiogenic galena.
Photo: Erik Jonsson.

Figure 6. Partly altered metamict
and heterogeneous aggregate of
highly radioactive REE minerals
in the western wall of the
uppermost part of the Ytterby
pegmatite quarry, near Vaxholm
(6592332/690226). The radial
fracture pattern in the feldspar-
dominated rock surrounding the
large, brownish to black
radioactive aggregate can be
readily seen. The snus box for
scale is 70 mm in diameter.
Photo: Erik Jonsson.



While most of the known, rare metal-bearing granitic pegmatites in the Swedish part of the
Fennoscandian shield are of small to moderate size, and therefore mostly not amenable to metal mining
in the modern industrial sense, some dyke systems (or fields) are more extensive, and the potential for
new discoveries certainly remains (the very recent discoveries of potentially economic lithium + tantalum
mineralisations in large granitic pegmatites under a modest soil cover in the Bergby area, southeast
central Sweden, illustrates this well). It should be noted that the generally small or very small degree
of available bedrock exposure in large tracts of Sweden suggests that the prospects of finding new rare
element (and other) pegmatites are fairly good, if suitable exploration methods are used. Also, the
general mineralogical character of granitic pegmatites, the occurrence of which always offers the
potential for actually containing several industrial minerals as well as metal ore minerals, may allow
scope for extracting several mineral commodities from a single deposit or group of deposits.

Distribution and REE mineralisation of granitic pegmatites

In central and northern Sweden rare metal pegmatites primarily formed between c. 1.82 and 1.78 Ga
(Romer & Smeds 1994, 1997), whereas occurrences with younger ages are found particularly in south-
ern, and not least, southwestern Sweden (down to c. 1 Ga; Romer & Smeds 1996). The groupings into
regional clusters (below) have partly been based on the mineral paragenetic and geological synthesis
of Smeds (1990). For more detailed information about singular occurrences and fields, in addition to
that given here, the reader is referred to references given in the text, including Sundius (1952), Brotzen
(1959), Lundegirdh (1971), as well as Smeds (1990), and references therein. Overall, neither figures on

average grades of metals including the REEs nor tonnages are available for these occurrences.

Southern Sweden

Several major clusters, as well as more scattered occurrences of rare element pegmatites are found in
southern Sweden (Fig. 4). Of these, the more marked clusters are located in the southwesternmost part
(Fig. 7). One is mainly associated with metasupracrustal rocks, occurring to the north of Gothenburg
and up towards the border with Norway, to a significant extent within the metasedimentary rocks of
the c. 1.6-1.5 Ga Stora Le—Marstrand formation. It includes the youngest known rare element pegma-
tites in the country, associated with similarly young granites (around 0.9 Ga; Eliasson & Schéberg
1991). This pegmatite cluster contains niobium, yttrium, and fluorine (NYF) and lithium, cesium, and
tantalum (LCT)-type dykes, with e.g. the locally YYHREE-Nb mineral-bearing pegmatites in the Nol
quarries and other localities belonging to the former type. The other general cluster in the region is
located south to southeast of Gothenburg (Géteborg; Fig. 7), mainly within an area dominated by
gneisses, including variably metamorphosed and deformed granitoids. These pegmatites represent
mainly primitive and NYF types; in this cluster several quarried pegmatites of this type, such as Ytter-
lida, Grine, Skillnabo and Derome/Torpa are known to carry locally abundant YYHREE-Nb oxide
minerals (e.g. Sundius 1952). Yttrialite-like minerals may be locally important, such as at Ingelsbo.
Additionally, the scandium silicate thortveitite has been found occurring together with Y-HREE-rich
oxides in one locality (Ytterlida; Langhof 1996).

A more modest number of granitic pegmatites occur in the southeastern part of Sweden, chiefly in
Ostergotland and Smaland. These are mainly of the NYF type (Fig. 8). A smaller subset occurs in
association with rocks predominantly belonging to the c. 1.84-1.80 Ga Vetlanda formation/Oskar-
shamn-J6nképing belt (O]B), while others primarily occur within or directly associated with TIB
intrusives. These pegmatites are typically rich in REE including Y + Mo (“the Smaland type” gra-
nitic pegmatites of Smeds 1990).

Characteristically, the REEs occur hosted by both Y+REE oxides and silicates, in some localities
also associated with e.g. uraninite. YYHREE-rich minerals such as euxenite-(Y) occur in several of
these pegmatites. Additionally, a chevkinite-like mineral [chevkinite-(Ce), approximately (Ce,REE,Ca,
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Figure 7. Simplified bedrock geology map showing locations of granitic pegmatites (quarries) and granitoids in southwes-
tern Sweden; REE-enriched occurrences mentioned in the text are named.

Th) ,(Fe,Mg),(T1,Fe);Si,O,,], is an important (L)REE host in at least one locality (Ingridstorp). A good
example of the YYHREE and Mo associations are the dykes formerly quarried at Slittikra (Fig. 8),
featuring locally abundant YYHREE-Nb-Ti oxides (euxenite and others), Y-enriched titanite (“yttroti-
tanite”), associated with e.g. molybdenite and its alteration product ferrimolybdite (cf. Langhof 1991).
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Figure 8. Simplified bedrock geology map showing locations of quarried granitic pegmatites in part of southeastern
Sweden; REE-enriched occurrences mentioned in the text are named.

Central Sweden

South-central Sweden (essentially comprising the Bergslagen ore province with surroundings) exhibits
several clusters, or fields, of granitic pegmatites of varying character. Within much of Bergslagen, they
are predominantly pegmatites of NYF afhinity, carrying Y-REE-rich minerals (oxides and silicates) in the
northwest-north and (north) east, although LCT-type pegmatite fields are found in the southeast of the
region, typically associated with more extensive areas of mainly pelitic metasedimentary rocks (Fig. 9).

Two chemically different suites of granitic pegmatites of NYF and LCT character, respectively, occur
in the easternmost part of the region. The pegmatites of the NYF family, including Ytterby, are
characteristically strongly enriched in the HREE compared with the LCT-pegmatites. The highest
degree of fractionation is observed in lithium-rich, LCT-type pegmatites in the lower-grade metased-
imentary rocks of the Stockholm archipelago, and specifically on the island of Uts (Fig. 9).

The well-known, historical pegmatite quarry at Ytterby, north of Stockholm (with abundant YYHREE-
rich minerals such as gadolinite-(Y), fergusonite-(Y) and yttrotantalite/formanite/ichikawaite-(Y); Fig. 10),
is part of the easternmost broad grouping of pegmatites in south-central Sweden, which includes a large
number of dykes, which can in turn be grouped into four separate clusters (Fig. 9). Two are located in the
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Figure 9. Simplified bedrock geology map showing locations of quarried granitic pegmatites in south-central Sweden,
essentially within the Bergslagen ore province; REE-enriched occurrences or clusters mentioned in the text are named.
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Figure 10. Hand specimen
featuring subhedral black
crystals of gadolinite-(Y) up to
approximately 2 cm, associated
with platy aggregates of biotite
(subhorizontal aggregates in the
lowermost part of the specimen)
and pale feldspar, from the
Ytterby pegmatite quarry on the
island of Resaro, west of
Vaxholm (6592332/690226).
Photo: Carl-Erik Alnavik.



northeast of the area, with a significant concentration of quarried dykes on the island of Viddo, including
several noted occurrences of HREE-enriched oxide minerals, allanite (sezs lato) and REE-phosphates.

An eastern central cluster, north of Stockholm, includes both Ytterby and the Gruvdalen quarry, which
exploited a pegmatite dyke similar to that at Ytterby (Smeds 1990, Wik et al. 2004; Fig. 9). Finally, the
southern cluster, in the southern part of the Stockholm archipelago, is the most fractionated LCT-type
pegmatite system in the region, exemplified by the pollucite-bearing dykes on the island of Uts (Fig. 9). In
these occurrences, the relatively sparse REEs that occur are likely to be mainly hosted by pyrochlore-group
minerals (microlite sezsu lato; e.g. Sundius 1952, Frondel 1958, Lumpkin & Ewing 1992, Atencio etal. 2010).

The western to northwestern and northern Bergslagen clusters, as well as dispersed occurrences within
the general Bergslagen area, typically host Y+REE as oxides and/or silicates (beside the ubiquitous allanites),
which characteristically may include gadolinite-(Y), samarskite sezsu lato, thalenite-(Y), and yttrialite-(Y)
(e.g. Sundius 1952, Brotzen 1959, Skoda et al. 2015; the unspecified Y-REE oxides and silicates of Smeds
1990). The historically important NYF pegmatite field in the Falun region (Fig. 9; Falun field) carries
gadolinite-(Y) as a characteristic REE mineral, together with allanite, yttrotantalite-like minerals, and
minor REE phosphates, for example (e.g. Smeds 1990). Additional REE carriers here include both “yttro-
fluorite” and “yttrocerite”, REE-enriched fluorites known chiefly from the boulder at Broddbo and the
classic pegmatite quarry at Finnbo (e.g. Gahn et al. 1818), as well as sparse fluocerite-(Ce) (Flink 1910). The
former two of these minerals also occur in an altered state, with currently unknown mineralogy.

Characteristically, REE hosts such as euxenite-(Y), polycrase-(Y) and samarskite-like minerals are
abundant in several occurrences and, as with many of the minerals mentioned above (e.g. yttrialite),
are typically associated with increased uranium and/or thorium contents. The latter may occur both
as components of the actual REE minerals and as discrete primary phases, as well as in the form of
alteration products (cf. above). Fluocerite-(Y) is important only locally, such as at Osterby, where
thalénite-(Y) also occurs in larger concentrations (Skoda et al. 2015; Fig, 9). The disputed, poorly
known, and now discredited Y-Nb-Ta-Sn-U-bearing oxide “hjelmite” (Peacor et al. 1982) occurs in
several granitic pegmatites of the province, and may locally be the most important REE carrier, such
as in the albite pegmatite at Stripasen (Tenow 1902; Fig. 9), and also typically occurs in the Falun field
pegmatites. Several REE pegmatites have recently been documented by SGU south of Borlinge; e.g.
the Flintgruvan 1/Lansmansgruvan and Flintgruvan 2, of which the former locality carries REE minerals
in very coarse white plagioclase (albite/oligoclase), and locally high U contents have been recorded (Ripa
et al. 2015). A mineral-chemical study showed the major REE host at Flintgruvan (1) to be a heavily
altered, Y-dominant aeschynite or polycrase mineral, associated with HREE-enriched thorite and
xenotime-(Y) (Orbe 2016; cf. Fig. 5). The Holmtjirn pegmatite, southeast of Idkerberget, carries abun-
dant yttrialite-(Y) and other HREE-enriched minerals (Figs. 9, 11)

Among the largest of the granitic pegmatites quarried in Sweden, the extensive Kolsva dyke (Fig. 9)
was mainly mined for feldspar, but was also test-mined for beryllium (from beryl and chrysoberyl), and
contained local concentrations of a poorly characterised samarskite-like mineral (Lundegirdh 1971).

The primitive, patchily zoned, mostly graphic pegmatites to pegmatoidal granites at Forshammar
in the Riddarhyttan area (Fig. 9; well-known for the nearby REE-rich Bastnis mines; see separate
section in this volume) in west-central Bergslagen, have been quarried for feldspar and quartz on
a relatively large scale more or less continuously since the early 1900s. Overall, these pegmatites are
mineralogically simple, voluminous, and locally carry andalusite, molybdenite, monazite-(Ce) and
allanite-like minerals (cf. Lundegirdh 1971). Notably, crystals of the tourmaline mineral dravite from
such a primitive, partly graphic granitic pegmatite cropping out near the Forshammar quarries were
found to contain the highest content of REE ever encountered in pegmatite-hosted tourmaline,
a dravite with fracture-fillings of hydroxylbastnasite-(Ce) (Bacik et al. 2012).

The scandium silicate thortveitite has also been found in one of the HREE-rich granitic pegmatites
in northwestern Bergslagen (Holmtjdrn), as well as in the Ytterby pegmatite (Langhof 1996).
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Figure 11. Field image of
10cm-sized lumps of Y-HREE-rich
silicates, chiefly yttrialite-(Y) and
presumed keiviite-(Y), from the
Holmtjarn granitic pegmatite
quarry, Dalarna (6691409/
514398). Photo: Erik Jonsson.

Northern and north-central Sweden

Broadly speaking, two major areas with pegmatite occurrences can be identified in northern Sweden
(Fig. 12); one extensive area in northernmost Sweden, characterised by some regional clusters, and one
in north-central Sweden, with minor clusters and singular occurrences in between.

The northern area comprises several variably well-defined clusters, of which the majority do not
carry extensive REE mineralisation. Simple, tourmaline-bearing pegmatites are relatively widely dis-
tributed, and aplites and pegmatites occasionally also carry weak Mo mineralisation. In northern to
northeastern Norrbotten in particular, granitic pegmatites, aplites and pegmatitic granites belonging
to the c. 1.8 Ga Lina granite-pegmatite (GP) suite are abundant (Bergman et al. 2001, 2002), although
only locally REE-bearing pegmatitic dykes or pods have been observed (Fig. 13).

Others, and in particular the Reunaavare—Flakaberget—Ruoutevare area pegmatites (Fig. 12), exhib-
it locally substantial amounts of Y+(H)REE oxides and/or silicates, and in one case also the Sc-silicate
thortveitite (Langhof 1996). Specifically, the pegmatites quarried in the Ruoutevare area are mark-
edly enriched in (H)REE+Y, carried in allanite, gadolinite, fergusonite, euxenite and “betafite”, among
others (Dagbo & Martinsson 1981, unpublished thesis; Smeds 1990).

The succession of medium- to high-grade metasedimentary rocks of the Bothnian basin, in
north-central Sweden, hosts a significant number of pegmatites. An extensive clustering around
Sollefted is phosphate-rich and of LCT afhnity, and collectively bundled together as the
“Li-pegmatite horseshoe” by Smeds (1990). These pegmatites are generally poor in REEs, butinclude
one of the largest Sn-mineralised pegmatites in Sweden — the Riggen dyke (e.g. Smeds 1994, and
references therein; Fig. 12).

Contrasting with these, and to the north of Riggen, are the Abborrselet and nearby pegmatites
(Fig. 12; e.g. Lundegardh 1971, Kjellman et al. 1999), which carry HREE+Y-rich oxides (fergusonite-(Y),
euxenite-samarskite minerals), locally associated with fluocerite-(Ce), as well as allanite, REE fluoro-
carbonates, and xenotime-(Y). Between the northernmost areas and that of the “Li-pegmatite horseshoe”
in the Sollefted region, are several smaller clusters. One of them comprises the partly well-studied
pegmatites of the eastern Skellefte district. Specifically, the complex and mineral-rich, pollucite-bear-
ing Varutrisk pegmatite (Quensel 1956, and references therein) and related smaller dykes in that area
(Fig. 12), represent highly fractionated LCT-type pegmatites. These can also be exemplified by the
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Figure 12. Simplified bedrock geology map showing locations of quarried granitic pegmatites and REE-mineralised
granitoids in northern Sweden; occurrences or clusters mentioned in the text are named.
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Figure 13. Coarse black masses/
aggregates of a metamict REE
mineral (allanite?) in a Lina
pegmatite dyke/segregation,
Overtorned, Norrbotten
(7391663/880957). Photo: Erik
Jonsson.

pegmatite occurrence exposed at the Akerberg mine, featuring a localised, highly fractionated LCT-
type unit. In such systems, the relatively low abundances of REEs can be hosted by pyrochlore-group
minerals (see above). Yet, all of these more fractionated LCT-type pegmatites only have economic
potential for metals such as Ta, Nb, Li, Sn, and Cs, rather than the REEs.

North of the Skellefte district is the pegmatite cluster of the Rined area (Fig. 12). The Ranea
pegmatites mainly seem to belong to the beryl-columbite subtype, and have relatively sparse verified
occurrences of REE-rich minerals, such as euxenite (sensu lato; A. Osterldv, personal communica-
tion). Of these, the Sérhillan dyke is notably rich in monazite-(Ce), and a euxenite-like mineral also
occurs; at Hogtriskkolen HREE oxides have been noted, as well as probable xenotime-(Y) from the
Hoégheden dyke.

REE mineralisation in granites, granitoids and related rocks

The RA-granite in the Balltorp/MdlIndal area

Among known granitic rocks with significant enrichment in the REEs, a type called “RA granite”, in
the Moélndal area of southwestern Sweden (Fig. 4), stands out. This Mesoproterozoic, mostly gneissic,
red, and apparently somewhat alkaline granite was initially investigated due to its marked radioactivity.
Subsequent analyses showed that, besides U and Th, it was also significantly enriched in a number of
other elements, notably Be, F, Nb, REE, Sn, Taand Zr (Holmqvist 1989, and references therein). Based
on the two samples analysed by Holmgqpvist, it contains between 0.65 and 0.88% total REE+Y, and
while it is relatively LREE-enriched, it still shows notable HREE, as well as Y contents between 1000
and 1500 ppm. Additionally, a Zr content of 1.9% was reported, and analyses performed prior to Hol-
mgqyvist’s study yielded 120 ppm U and 380 ppm Th. Subsequent chemical analyses of this rock, per-
formed during an assessment of bedrock quality for aggregate applications, exhibit variable REE
contents, with total REE+Y between c. 230 and 1300 ppm (T. Eliasson, personal communication 2016).
A transmitted polarised light image of a representative polished thin section of an RA-granite sample
shows aggregates of titanite, zircon, chlorite and oxide minerals occurring in a conspicuously fluorite-
bearing quartz-feldspar groundmass (Fig. 14).
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Figure 14. Transmitted polarised
light image of a representative
polished thin section of the
RA-granite sampled for the
bedrock quality study of Eliasson
et al. Aggregates of titanite (Ttn),
zircon, chlorite/biotite and
opaque oxide minerals occurin a
fluorite-bearing (Fl) quartz-
feldspar groundmass. Photo:
Thomas Eliasson.

The RA-granite is likely to be related to, and coeval with, the c. 1.3 Ga Kirra granite, belonging to
the bimodal Kungsbacka intrusive suite (e.g. Austin Hegardt et al. 2007). The geographical location,
partly in a well-populated area, partly in a nature reserve, however, combine to reduce the potential
for future exploitation.

The Bohus granite

Also in southwestern Sweden, the c. 920 Ma Bohus granite (Eliasson & Schioberg 1991) exhibits mode-
rately high general REE contents according to available bulk geochemical analyses.

The granitoid-hosted Naveran Th-(U)-REE prospect

The Naveran Th-(U)-REE prospect is situated in central Sweden, approximately 30 kilometres east of
Ostersund and 100 km east of the Scandinavian Caledonides (7006810/515025; Fig. 15).

The Niveran area predominantly comprises fine- to medium-grained, weakly foliated, light grey
granite to granodiorite. Additionally, as observed in drill cores, thin pegmatitic veins and a fine-
grained mafic rock occur in subordinate amounts. The granite to granodiorite was dated by the U-Pb-
method on monazite to 1.86-1.87 Ga (Lundqvist et al. 2003).

The Niéveran prospect was first discovered in the 1970s during a government-funded uranium exploration
programme. The area was identified due to a high concentration of boulders of radioactive chlorite-biotite-rich,
brecciated granite along an approximately 1.5-km-long and 50-m-wide trail. Analyses showed a generally high
content of thorium (up to 2300 ppm) but a relatively low content of uranium (less than 1500 ppm). Besides U
and Th, anomalous and significant concentrations of yttrium (up to 1% Y), cerium and lanthanum were
detected (Pettersson 1980a; Pettersson, 1980b, unpublished reports). Exploration work continued in the area in
the early 1980s, and included 14 diamond drillings totalling 1366 metres of core. A weakly mineralised zone
was intersected in two of the cores. The Niverin prospect was abandoned in 1982 due to the meagre results.
Tasman Metals AB had a claim of the area between 2011 and 2014 and the company reanalysed several boul-
der and drill core samples. These analyses showed an average total rare earth oxide (TREO) content of 1.17%
(ranging between 0.58 and 2.40%). Chemical analyses of drill core sections from holes NAV80004 and
NAV820004 (Fig. 16) are less enriched and contents range between 0.007 and 0.8% TREO, Table 2.
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Figure 15. Simplified bedrock geology map showing the location of the Naverdn mineralisation (7006810/ 515025), a few
kilometres east of the Caledonian front.

The mineralisation is hosted by a highly fractured granitoid rich in chlorite and biotite, interpreted
as a brittle-tectonised variety of the granite to granodiorite predominating in the area (Pettersson 1980a,
unpublished report). Thin section studies of the mineralised boulders also confirmed the predominance
of chlorite and biotite in a strongly schistose texture. Anomalous amounts of other minerals, particu-
larly apatite, xenotime and zircon, are also present, which explains the high contents of Y, Ce and
other REE in bulk geochemical analyses (Fig. 17). In addition, minor amounts of galena, uraninite,
monazite, allanite, as well as two unidentified minerals, an Y-silicate and an Y-phosphate, occur in the
mineralisation. According to Pettersson (1980b; based on SEM-EDS work, unpublished report), Y is
mainly hosted by xenotime, but also by the two unidentified Y-minerals, while Ce mainly occurs in
monazite and allanite; La in monazite, xenotime and allanite (sezsu /ato), U only in uraninite, and Th
mainly in monazite.
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The Taresaive Mo-REE-(U-Th) mineralisation

The Téresaive mineralisation in northern Sweden (Figs. 4, 12) was discovered during the “Norrlands mine-
raljakt” (“northern Sweden mineral hunt”) in 1979 (SGU sample ID 79293). Here, molybdenite occurs in
hydrothermally altered granite, metarhyolite, and pegmatite. The host granite is c. 1.88 Ga (Claeson et al.
2018); the analysed zircons were significantly metamict, however, and the results therefore of lower quality
and with great uncertainties. The molybdenite mineralisation appears to be related to cracks and fissures,
but is also disseminated in the host rocks. A few fractures, 10-30 cm wide and more than one metre long,
with molybdenite mineralisation occur in the outcrops. An analysis of a mineralised sample from Téresdive
indicates at least 15% Mo and very high contents of rare earth elements (94 900 ppm REE_, i.e. 9.5%).
If yttrium is included, the content increases to >100 600 ppm. The origin of the mineralisation is discussed
at some length in Claeson & Antal Lundin (2018). The mineralised sample analysed also exhibits elevated
levels of 1490 ppm U, 2430 ppm Th, 396 ppm Nb, 36 ppm Ta, 37 ppm Se, 115 ppm Be, 380 ppm Pb, and
178 ppm W. The economic potential of the mineralisation has not been evaluated.

A reconnaissance scanning electron microscope study of Téresdive samples performed under the
present project revealed a relatively complex mineralogy, with REE mineralisation directly associated
with molybdenite, hosted by Th-bearing monazite-(Ce), unidentified, probably mostly altered and
heterogeneous U-REE-Pb-Th-rich phases, xenotime-(Y), REE-enriched epidote to allanite-(Ce),
unspecified REE fluorocarbonates, aeschynite-(Y), a potential gadolinite-hingganite mineral, and
groundmass fluorite (sparse content of Y + Yb detected; cf. “yttrofluorite”™ Fig. 18).

REE mineralisation in alkaline intrusive rocks

Opverall, it is well established that evolved alkaline/peralkaline intrusive (+ extrusive) rocks may host
economic or subeconomic resources of rare metals, including the REEs (e.g. Dostal 2016), and such
rocks, together with carbonatites (see below), are therefore among the more relevant ones to explore on
a global scale. At present there are several deposits or advanced exploration targets in which REE min-
eralisation is hosted by, or directly associated with, alkaline/peralkaline igneous rocks (e.g. the Kipawa
complex, Strange Lake and Thor Lake, Canada; the Ilimaussaq complex, Greenland; Norra Kirr,
Sweden, and Dubbo, Australia). In Sweden, no alkaline-hosted mineralisations have been worked for
REEs to date, but one such deposit— Norra Kirr — represents what is currently one of the most advanced

Figure 18. Back-scattered electron (BSE)
image of an REE mineralised sample from
the Taresaive mineralisation (7421196/
709317). The dark grey to black ground-
mass predominantly comprises REE
epidote/allanite-(Ce), quartz, and mica.
The majority of subrounded, white grains
are monazite-(Ce), with minor xenotime-
(Y) and REE fluorocarbonates. The left
central heterogeneous grain/aggregate
consists of a core portion of a partially
altered U-Pb-Th-U-rich phase, surrounded
by two monazite grains. Photo: Erik
Jonsson.
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and promising REE mining projects in western Europe. In the context of the Fennoscandian Shield,
the only recent (and significant) production has been from loparite-mineralised alkaline intrusives on
the Kola Peninsula, Russia. The other clans of igneous-hosted REE mineralisation types, granitic
(including pegmatitic) intrusives and carbonatites are treated separately (above and below).

Several other alkaline intrusives featuring some potential for REEs (as well as other metals and
industrial minerals) are known, such as Sirna, Dalarna and Almunge, Uppland. Yet, presently, no
clear-cut data showing significant REE mineralisation in either of them are known to us at present.

The Norra Kdrr nepheline syenite complex

Among the more advanced REE projects in the Fennoscandian shield, the nepheline syenite-hosted
Norra Kirr deposit in southern Sweden, with its NI-43-101-compliant resource of 16.5 Mt at 0.64%
TREO (Gates et al. 2013), stands out as one of the more relevant deposits in Europe. This is because
of the relatively high proportion of the economically most attractive HREE:s, its location in relation
to transport and other infrastructure, and the fact that, in contrast to many other similar REE mine-
ralisations, the one at Norra Kirr essentially lacks associated uranium and thorium. The following
description is based on that in Jonsson (2013).

The Norra Kirr alkaline complex is a small, Mesoproterozoic intrusion, located east of Lake Vittern,
and some 10 km north-northeast of the town of Grinna (Fig. 19). The concentrically zoned intrusion
contains several varieties of zirconium and rare earth element-enriched, peralkaline (agpaitic) neph-
eline syenite rock units (Fig. 20). It is roughly elliptic in outline, with a north—south long axis of
approximately 1300 m, and an east—west short axis of about 500 m, and although inwardly dipping,
is open at depth (e.g. Sjoqvist et al. 2013b).

The unusual nature of the rocks here was first noted in 1905 and described in more detail by Tor-
nebohm in 1906 as a “katapleiite-syenite”, named for its content of the rare alkali-zirconium silicate
catapleiite. Norra Kirr was further studied and described by Adamson (1944). An additional “exotic”
mineral that is abundant at Norra Kirr is eudialyte (actually eudialyte-group minerals; Sjoqvist et al.
2013a), which is also the main REE ore mineral in the resource.

The geology of the area predominantly consists of 1.81-1.76 Ga magmatic rocks of the Transscan-
dinavian Igneous Belt (TIB), which are made up of mainly felsic plutonic and (lesser amounts of)
volcanic rocks (Andersson & Wikstréom 2004). In the vicinity of Norra Kirr no regional metamorphic
overprint is present, yet Norra Kirr is located within a north—south trending corridor of ductile shear
zones, which have affected the intrusion significantly, as also suggested by textures and fabrics of the
major rock units of the complex (e.g. Sjoqvist et al. 2013b).

The most abundant rock in the Norra Kirr complex is “grennaite” (named after the nearby town of
Grinna; Adamson 1944), a foliated, fine-grained nepheline syenitic rock consisting of microcline, albite,
nepheline, aegirine, eudialyte (sensu lato), and locally abundant catapleiite (hence Tornebohm’s original
name for it); it is named “GTC” in the nomenclature of Tasman Metals Ltd (Sjoqvist et al. 2013b; Fig. 20).
Less abundant rocks are “lakarpite” (an arfvedsonite-albite nepheline syenite), “pulaskite” (microcline-
arfvedsonite-albite nepheline syenite), and “kaxtorpite” (a pectolite-eckermannite-aegirine-nepheline
syenite; kaxtorpite and lakarpite were both named after nearby farms). Irregularly developed, coarse-grained
pegmatitic schlieren with equivalent mineralogy to the grennaite are also common, often hosting coarse-
grained REE-zirconium minerals, in particular eudialyte (Fig. 21). This pegmatitic grennaite type is called
“PGT” in the Tasman Metals nomenclature (Sjoqvist et al. 2013b; Fig. 20). Lastly, there is another variety
of grennaite thatisalso fine-grained, but differs texturally and chemically from the other fine-grained rock.
It contains more hydrated minerals (zeolites), is commonly folded, has a paler colour, and is richer in light
rare-earth elements. The rock displays a somewhat veined or migmatitic texture, and has therefore been
named “migmatitic” grennaite or “GTM” in Tasman Metals nomenclature (Sjoqvistetal. 2013a, b; Fig. 20).
The nepheline syenite variety called lakarpite predominantly comprises sodic amphibole and pyroxene,
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Figure 19. Simplified bedrock map showing the location of the REE-mineralised Norra Kérr nepheline syenite complex
(6440266/ 474525) east of Lake Vattern, southern Sweden.

albite, microcline, as well as nepheline, and fluorite. It is by far the most mineralogically varied rock type
in the Norra Kirr complex, with associated and accessory minerals including eudialyte, mosandrite,
rosenbuschite, pectolite, galena and greenockite (Sjoqvist et al. 2013a, b). The variety called kaxtorpite only
occurs near the centre of the intrusion; it is often folded, and consists predominantly of eckermannitic
amphibole (fluoro-aluminoleakeite? Cf. Oberti et al. 2009), sodic pyroxene, microcline, albite, and zeolite-
altered nepheline, together with accessory pectolite, willemite, and lorenzenite (Sjéqvist et al. 2013a, b).

The Norra Kirr intrusive complex is surrounded by a fenite aureole up to approximately 100 m wide.
LA-MC-ICP-MS-dating of fenite-hosted zircons from the hanging-wall to the intrusion, fairly con-
clusively linked to the intrusion-related fenitisation process, yielded an age of 1.49 + 0.01 Ga, which is
interpreted as equal to a magmatic crystallisation age of the complex (Sjoqvist 2015).

As noted by Sjoqvist et al. (2013), the first stage of exploration in the area was conducted by the
Swedish mining company Boliden AB, which investigated the potential for extracting zirconium and
nepheline from the grennaite. This was done during and after the Second World War, as Sweden sought
self-sufficiency in strategic minerals and energy resources. Following this, in 1948 Boliden AB signed
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Figure 20. Bedrock geology of the Norra Karr complex, including unit classification, courtesy of Tasman Metals/Leading
Edge Materials (source: Saxon et al. 2015)
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Figure 21. Abundant, coarsely
crystallised red eudialyte (sensu
lato) in outcropping pegmatitic
grennaite (“PGT”), Norra Karr.
Hand lenses for scale. Photo: Erik
Jonsson.

Table 3. Overview of REE and zirconium contents of the main units at Norra Karr (from
Sjoqvist et al. 2013b). The abbreviations PGT, GTM and GTC are explained in the text.

Rock type TREO%* HREO% Zr02%
PGT domain 0.62 55.4 2.01
GTM domain 0.53 431 149
GTC domain 0.27 63.5 135
Lakarpite 0.23 421 0.55
Kaxtorpite 018 25.6 0.24
Pulaskite 0.13 40.8 0.35

*TREO%=Rare Earth Elements (La+Ce-Lu +Y) in oxide form. HREO = Eu-Lu +Y.

a contract with the landowners giving the company mining rights. Test mining on a small scale was
carried out at two sites in 1949, and included subsequent concentration tests. Using the technology of
the day, it was found to be difficult to separate nepheline from feldspar and aegirine, and the iron
contents of the nepheline concentrates were therefore too high. In 1974 Boliden AB restarted its explo-
ration for nepheline, zirconium and hafnium at Norra Kirr, and, among other things, sampled two
long trenches 400 m apart across the intrusion. This yielded 244 m at 1.9% ZrO,, 0.37% TREO* in
the “north trench”, and 149 m at 1.49% ZrO,, 0.43% TREO; and 52 m at 1.47% ZrO,, 0.54% TREO
in the “south trench” (TREO = total rare earth oxide + yttrium oxide (Y, 3); Sjoquist et al. 2013b).
The eudialyte-group minerals at Norra Kirr exhibit significant chemical variability within the
intrusion, including in their REE content (Sjoqvist etal. 2013a). Wavelength-dispersive electron micro-
probe (WDS-EPMA) analyses of Norra Kirr eudialytes (seznsu lato), performed for Tasman Metals,
and only including Ce,O5+La,03+Nd,0;+Y,0;, yield overall REE totals between 0.85 and 8.49 wt%.
The highest and lowest average content reported (from different analytical laboratories) is 6.73 and 5.11
wt%, respectively (Sjoqvist et al. 2013b). Since the REEs that were not analysed should reasonably
account for at least an additional 1.5-2.0 wt%, it is inferred that the average total REE content in the
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Figure 22. Mineralogical distribution in Norra Karr mineralised rock types as determined by MLA (Saxon
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Table 4. Norra Karr Project, N143-101 Compliant March 2012 “in-pit” mineral resource estimate (from Sjoqvist et al. 2013b).

Classification TonnesMt TREO% LREO% HREO% HREO/TREO% ZrO,% Tonnes of TREO contained

Indicated 41.6 0.57 0.28 0.29 50.8 1.70 237120
Inferred 16.5 0.64 0.33 0.31 484 1.70 94,050

eudialytes within the Norra Kirr resource ranges between 6 and 9 wt% (Table 3, Sjoqvist et al. 2013b).
Although REEs are hosted by several additional minerals present within the complex, the work by
Tasman Metals was largely focused on eudialyte. Zirconium has also been looked at as a possible
by-product, as have nepheline concentrates.

A resource calculation by Tasman Metals showed REEs to be enriched throughout the Norra Kirr
deposit, with the higher value HREEs overall representing more than 50% of total REE content.

Mineralogy is an important factor when it comes to beneficiation test and mineral processing stages. The
mineral characterisation of samples from different rock units in Norra Kirr based on mineral liberation
analysis (MLA) technology revealed variation and constituents of mineralogy in each domain (Fig. 22).

The Norra Kirr complex thus hosts a significant REE resource featuring a relatively high proportion
of the economically most relevant heavy rare earth elements and is one of only a few NI 43-101-
compliant REE deposits in the European Union. The mineral resource estimate from March 2012
defined a combined indicated and inferred “in-pit” resource (Table 4) of 58.1 million tonnes grading
0.59% TREO (Total Rare Earth Oxides) and 1.70% ZrO,, with about 50% of the TREO being the
higher value HREO (Heavy Rare Earth Oxides). The resource is defined down to 200 m vertical depth,
of which the indicated part comprises the first 120 m, and is based on 49 holes out of a total of 8,016
m drilled in 100 m spaced sections, with an average of 80 m between holes (Sjoqvist et al. 2013b); the
resource remains open at depth in most of the drilled sections, and later drilling has also intersected
mineralisation above cut-off down to 320 m vertical depth.
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REE mineralisation in carbonatitic and ultramafic rocks

The Alné carbonatite-alkaline intrusive complex

The Alnd complex consists of a main intrusion, and a few separate smaller intrusions on the island of
Alng, in the Bothnian Bay and on the mainland north to northwest of Alng, all along the coast of
east-central Sweden (Kresten 1976, 1979, 1990; Fig. 23).

While no extensive REE mineralisation has been defined on Alné or in its surroundings, the carbona-

tites, and specifically the calcite-dominated ones (sgvites), contain significantly elevated total REE content,
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Figure 23. Simplified bedrock geology map of the Alné complex and surrounding areas.
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between approximately 500 and 1500 ppm (Hornig-Kjarsgaard 1998). Alnon and associated rocks on
the mainland have also been the focus of exploration for REEs, including that carried out by the
Boliden company in the 1970s (Svensson 1972, unpublished report).

The rocks of the main intrusion are jjolite, melteigite, urtite, nepheline syenite, pyroxenite and
Ca-carbonatite. Alnaitic, phonolitic and syenitic dykes show cross-cutting relationships with the
other rocks of the intrusion (Hode Vuorinen 2005). Fenitisation is a common feature in the surroun-
ding country rocks. The Ca-carbonatite dykes are a few centimetres to several tens of metres wide. One
of the largest is the Baring intrusion, west of the main intrusion.

The Soréker intrusion islocated on the mainland north of Alné and comprises Ca- and Mg-carbonatite
dykes and melilitolites (Fig. 24). Melilite occurs in alndites and kimberlitic alndites on Alné and in
melilitolites at Sordker. The kimberlitic alndites contain more olivine and are more primitive than
alnéite. Carbonatite dykes, not least Mg-rich ones (“beforsite”, named after the locality) also occur in
the Bergeforsen—Timra area, west to west-northwest of Soraker.

The ijolite series rocks are primarily composed of clinopyroxene, nepheline and Ti-andradite. The
pyroxenites consist of clinopyroxene and minor amphibole and apatite (Fig. 25). The major constituents
of the nepheline syenite are nepheline, K-feldspar and aegirine—augite. Accessory phases in the jjolite
series rocks include titanite, apatite, phlogopite, perovskite and magnetite. In the pyroxenites, the
accessories include Ti-andradite, titanite, perovskite and nepheline. The nepheline syenites contain
accessories such as Ti-andradite, biotite, apatite, titanite, cancrinite, calcite, wohlerite and pyrochlore
(Hode Vuorinen et al. 2005). Clinopyroxenes show enrichment in LREE up to 100 times chondritic
values. Ti-andradites show extreme enrichment in all REEs, especially in LREE (La, Ce, Pr, and Nd)
and MREE (Sm, Eu, Gd) — more than 2000 times chondritic values (Hode Vuorinen et al. 2005).

The Alné complex has been dated several times using different methods, yielding ages of between
546 and 590 Ma (Kresten et al. 1977, Brueckner & Rex 1980, Andersen 1996; Walderhaug et al. 2003,
Meert et al. 2007).

Melilitolite and ijolite series rocks were formed by fractional crystallisation of olivine, clinopyroxene
and melilite in an almost closed system. Crustal contamination took place during late- to post-mag-
matic stages. Silicate minerals in the carbonatites are either a result of contamination by wall rock or

of magmatic origin. Liquid immiscibility may be an important factor in the genesis of the carbonatites

on Alné (Hode Vuorinen 2005).

Figure 24. An approximately
50-cm-wide irregular carbona-
tite dyke incorporating,
dissolving and disseminating
high-grade fenite (Stornéset).
Photo: Johan Séderhielm
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Figure 25. Layered ijolite
cross-cut by a fine-grained
nepheline syenite at Brannas.
Photo: Johan Séderhielm

Notably, besides Alnon itself, a number of carbonatitic and related dykes on the mainland (such as
in the Bergeforsen—Timrd area) as well as smaller massifs (Soraker area) have been reported over time,
and also include carbonatites with increased radioactivity (Eckermann 1960). Boulder finds, featuring
e.g. apatite mineralisation, and increased REE contents in the vicinity of Séraker also highlight the
potential for as yet unknown occurrences in that area (e.g. Sundberg 2005, unpublished report). This,
combined with the fairly recent finds of a number of ultramafic diatremes (“kimberlitic’/lamproitic to
alnéitic in composition and in part enriched in REEs and other elements), more than 40 km north and
northwest, inland from Alnén (e.g. Sundberg 2000, Sjberg 2004), suggests some remaining potential
for new discoveries in the wider region (see below).

Ultramafic and carbonatitic dykes in the Kalix area

Ultramafic rocks occur as up to I-metre-wide, north—south trending dykes along the coast of the Gulf
of Bothnia between Kalix and Lulea (Figs. 26, 27; Larsson 1943, Kresten et al. 1981). The dykes
intruded into Palaeoproterozoic igneous and metasedimentary rocks at 1.1 Ga (Kresten et al. 1997).
They comprise olivine-rich or micaceous lamprophyres and silico-carbonatites (Kresten et al. 1981).
Beforsites, i.e. dolomite-dominated carbonatites, were also described by Kresten et al. (1981).

The lamprophyres are characterised by a porphyritic texture. The most abundant minerals are
olivine, phlogopite, spinel (magnetite, hercynite), calcite, serpentine, clinopyroxene and amphibole.
Olivine, phlogopite and spinel group minerals occur as phenocrysts (Sundvall 2003). Kresten et al.
(1981) reported perovskite and anatase in the olivine-rich lamprophyres. The dykes are co-magmatic,
evolving from a low degree of partial melting in the upper mantle by fractional crystallisation of
olivine, spinel and phlogopite (Kresten et al., 1981; Sundvall 2003).

EDITOR: MARTIYA SADEGHI
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Figure 27. Calcite-rich, zoned
lamprophyre dyke at Storon,
south of Kalix. Photo: Johan

Soderhielm.

Carbonatitic rocks in the Akersjén area, Jimtland

The Caledonian rocks of the Akersjon area of Jimtland, west-central Sweden, host a suite of modest

exposures of partly REE-mineralised carbonatitic rocks. Intrusive-hosted mineralisation in the region
was first noted at Pristrun, west of Akersjon (Fig. 28) in the 1980s, during the follow up of an air-
borne radiation anomaly. This was subsequently found to be caused by niobium-mineralised, mostly
gneissic, but locally also pegmatitic, alkaline rocks within Caledonian thrust nappes, near the boun-
dary between the Sirv and Seve nappe complexes (Lofroth & Pettersson 1982). Additional studies to
evaluate the potential for exploiting the niobium mineralisation, hosted by a pyrochlore-group mine-
ral (“betafite”) were also carried out (Holmqvist 1989, unpublished report; Halenius 1990, unpublished
report). This was not found to be economically feasible at the time, however. The Akersjon area is in
turn located some 10 km east of Pristrun, in a very similar tectono-stratigraphic position (Fig. 28).
Here, the presence of mineralised carbonatitic units was recognised during external contract work by
SGU, leading to carbonatitic (to “glimmeritic”) rocks carrying local REE-Nb-(U-Th) mineralisation
being discovered in both boulders and in situ, seemingly as components of a comagmatic silicic—car-
bonatitic intrusive system (Jonsson & Stephens 2004, 2000).

The Akersjon area is predominantly made up of Caledonian thrust sheets; nappes belonging to the
Sirv Nappes in the Middle Allochthon, and the Seve Nappe Complex in the Upper Allochthon are
present (cf. Stephens et al. 2004). Both the alkaline rocks in the Pristrun area (Lofroth & Pettersson
1982) and those exposed at Akersjon seemingly occur along the contact between the Sirv Nappe and
the Seve Nappe Complex, and Jonsson & Stephens (2006) suggested that they had intruded along this
contact and were subsequently metamorphosed and deformed during the Caledonian orogeny and
associated thrusting.

Most of the exposed part of the Akersjon system consists of variably silicate-bearing carbonate rocks,
as well as feldspar-dominated, biotite + carbonate-silicate rocks, and units consisting almost solely of
this ”biotite” are common (“glimmeritic rocks” Fig. 29). The feldspathoid mineral sodalite occurs
locally. The rocks range from fine- to coarse-grained, but are mostly medium-grained, with variably
apparent banding/foliation. These rock types are mostly markedly radioactive. In the Pristrun
mineralisation, the main host for radioactive elements seems to be a betafite-like mineral of the
pyrochlore group, yet at Akersjon, the host mineral(s) is so far unknown. Mineralisation at Akersjon
is hosted by REE fluorocarbonates (including bastnisite-(Ce); Jonsson & Stephen 2000).
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Figure 28. Simplified bedrock geology map showing locations of Akersjon (7071002/454407) and the Pristrun
(7071939/443926) mineralisations in the central Swedish Caledonides.

Figure 29. Medium-grained, calcite-rich carbon-
atite in contact with black mica-rich (“glimmeritic”)
unit outcropping at Akersjon (7071002/454407).
Photo: Erik Jonsson.
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Other areas of potential future interest for carbonatites and alkaline rocks

The Gavle graben structure, southeast-central Sweden

The Givle graben is a poorly exposed, west-southwest—east-northeast-oriented structure between Stor-
vik and Givle, continuing into the southern part of the Bothnian bay. It is filled by ¢. 1.5 to 1.3 Ga
“Jotnian” sandstones, which have been intruded by doleritic sills and stocks and are interlayered by
basalt (Fig. 30).

During the Mineraljakten organised public search for minerals, samples of an apatite-calcite rock
from boulders found along a forest road near Frimlingshem, southwest of Givle were submitted. Based
on studies on these, as well as smaller pieces of rock found subsequently that also carried abundant
apatite, Nystrom et al. (1985) concluded that they had a carbonatitic character, and suggested the
possibility of a covered, unknown carbonatite intrusion within the Givle graben structure. The occur-
rence of larger boulders of the soft and easily broken-up apatite-calcite rock (Fig. 31) suggests short
glacial transport.
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Figure 30. Simplified bedrock geology map showing the location of the Framlingshem boulders (6709872/605974), in
relation to the poorly exposed Gavle graben structure.
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Mineralogically, the boulder material studied contains fluorapatite, calcite (markedly strontium-
enriched at c. 2600 ppm), quartz, fluorite, magnetite, pyrite, chlorite (pseudomorphs after biotite or
phlogopite?), and sericite, with accessory hematite, ilmenite, epidote and titanite, and carries abundant
xenoliths of what has been interpreted to be Proterozoic country rocks (Nystrom et al. 1985). The
fluorapatite is reported by these authors to contain around 2000 ppm Ce (notably, as the only REE
analysed), and a whole-rock analysis of the apatite-calcite rock yielded over 1000 ppm TREO, with
content and proportions very similar to carbonatites from Alnén and Sokli in Finland (Nystrom et al.
1985; Méller et al. 1980). These observations, combined with available strontium and carbon isotope
data, strongly indicate a carbonatitic affinity for the rock in the Frimlingshem boulders. Additionally,
as noted by Nystrom et al., von Eckermann (1928) discovered a geologically young dyke of a mica
lamprophyre at Hamrénge (called “hamrongite” by that author) some 25 km north of Givle, further
indicating young magmatic activity of an alkaline character, potentially allied to carbonatites, in this
general area.

All in all, the Givle graben area seems to have potential for future exploration for what could be
economically relevant apatite-REE-mineralised carbonatite occurrences. The low, flat and wet terrain
in this area makes both bedrock studies and exploration problematic, but this also increases the like-
lihood that an occurrence of exotic rocks such as carbonatites has escaped attention.

Figure 31. Apatite- and mica-rich
carbonatite-like rock from
Framlingshem, south of the
Gavle graben; note the approx-
imately 7-mm-wide, euhedral,
greenish-grey apatite crystal in
the uppermost part of the
image. The image width is
c.5cm. From the mineral
collection of the Swedish
Museum of Natural History,
Stockholm (catalogue number
20040078). Photo: Jorgen
Langhof.
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The Avike Bay structure, east-central Sweden

Some 10-15 km northeast of the island of Alnd, with its comparatively well-studied carbonatite-
alkaline intrusive complex (Fig. 23) lies the Avike Bay (Avikebukten), a markedly semicircular part of
the coast, but also extending into the sea(floor). This has been variously interpreted as an igneous
centre similar to Alndn, or as a meteorite impact structure (cf. Preeden et al. 2010, and references
therein). The occurrence of ultramafic (“kimberlitic”) as well as carbonatitic rocks as both in situ dykes
and boulders in this area suggests some potential here and in the area between the Avike Bay and
Alnén/Soriker.

An inferred (sub-)seafloor location of the central part of a potential intrusive complex here natu-
rally makes any economic exploitation of such an occurrence unlikely.

REEs in apatite-iron oxide deposits, Norrbotten, northern Sweden

The apatite-iron oxide mines of the Norrbotten region of northernmost Sweden currently produce over
90% of all iron ore mined in Europe. As in other apatite-iron oxide ores (¢f- description of apatite-iron
oxide ores in Bergslagen, Sweden, and references therein), fluorapatite and associated REE-bearing
phosphates (and silicates, in the case of REE) in these ores represent variably relevant potential reserves
of both REEs and phosphorus.

At present some 40 apatite-iron oxide deposits are known from the far north of Sweden (Fig. 32,
Bergman et al. 2001). Outside of the main areas of apatite-iron oxide ore occurrences, late-stage and
breccia type iron oxide mineralisations with locally increased REE contents have also been observed
(Jonsson 2008, Jonsson & Kero 2013, and references therein). The main (at over 2000 Mt) deposit in
Norrbotten is the eponymous Kiruna (Kiirunavaara) mine, the “type locality” of the Kiruna-type ores
(cf. Geijer 1931). Second in size and output is the Malmberget mine, also featuring apatite-iron oxide
ore, but with a significantly more extensive overprint from both regional metamorphism and deforma-
tion. Since mining of these deposits began, their origin has been debated, and there is still controversy
over whether they were formed by essentially hydrothermal processes (including replacement), or by a
direct (ortho-) magmatic one (e.g. Geijer 1930, Pardk 1975, Frietsch 1978, Hitzman et al. 1992, Nystrom
& Henriquez 1994, Williams et al. 2005, Jonsson et al. 2013, and references therein). The Norrbotten
apatite-iron oxide ores are mined by the company LKAB (Luossavaara-Kirunavaara Aktiebolag).

Geology and deposits

The host rocks of the Norrbotten apatite-iron oxide ores comprise regionally metamorphosed c. 1.91-
1.88 Ga volcanic rocks of the porphyry and porphyrite groups (Fig. 32, cf. Bergman et al. 2001, and
references therein). The local feldspar-porphyritic texture of some intermediate and felsic units has
given rise to their names. Compositionally, these rocks range from basalt, via andesite or trachyande-
site, to rhyolite-dacite, of which a porphyritic trachyandesite (“syenite porphyry”) forms the footwall
rocks to the Kiruna ore (Bergman et al. 2001). The iron oxide ores characteristically form planar,
laterally extensive high-grade magnetite-dominated ore bodies, which are essentially concordant with
the host rocks and their contacts. The Kiruna ore itself forms an over 5-km-long, up to 100-m-thick,
planar body that dips moderately steeply to the east. Alteration of the host rocks is quite widespread
at Kiruna, including albitisation, sericitisation and amphibole alteration. Of these processes, albitisa-
tion seems related to a gabbroic to monzoniticsill in the footwall, sericitisation to post-ore deformation;
amphibole veining and alteration with associated biotite-chlorite alteration seems associated with ore
formation (Bergman et al. 2001). Although most Kiruna ore is massive, some particular textural and
structural features occur, such as in the dendritic type of magnetite (cf. Nystrom & Henriquez 1994,
and references therein). Breccias are also characteristic of the Kiruna deposits, and extensively develo-
ped in both the foot and hanging wall contacts (Fig. 33). Amphibole alteration is abundant in and
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Figure 32. Simplified bedrock geological map of central northern Norrbotten, showing the locations of the Kiruna and
Malmberget mines and other significant apatite-iron oxide deposits.

associated with the breccias, and magnetite-amphibole veins can extend tens of metres into the hang-
ing wall (Bergman et al. 2001). The age of mineralisation at Kiruna is suggested to be 1.89-1.88 Ga
(cf. Bergman et al. 2001, and references therein), while Smith et al. (2009), based on e.g. in situ LA-
ICP-MS analyses of allanite, scapolite and titanite, suggested host rock ages as old as 2.05 Ga, and ages
of mineralisation (or potentially related systems) of between 1.92 and 1.79 Ga. Some of these younger
ages could represent disturbed isotopic systems, but young ages, down to ¢. 1.73-1.72 and 1.64-1.62 Ga,
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Figure 33. Iron ore breccia
exposed at the top of Kiruna-
vaara hill, featuring angular
fragments of host rock
porphyry cemented by a
magnetite-rich groundmass

(c. 7534350/7182240). Photo: Erik
Jonsson.

related to fluid overprinting of the ores, and formation or growth of monazite and other minerals, were
recently reported by Andersson et al. (2016).

As regards the 40 or so known major deposits, the SGU mineral resources database currently contains
80 discrete and named mines, deposits or mineralisations of general apatite-iron oxide character in
Norrbotten. Of these, many are individually named mines, sectors or workings within the major min-
ing areas at Kiruna and Malmberget. The occurrence of REEs in these deposits is intimately linked to
the presence of apatite (luorapatite), so in general, high apatite (or phosphorus) content of the discrete
ores or ore bodies suggests an increased potential for these metals.

Also in the central Kiruna area, the smaller and more hematite-rich, Per Geijer ores (the Haukivaara,
Henry, Rektorn, and Nukutusvaara deposits) are located in the upper part of the porphyry stratigraphy,
and are in part apatite-rich; the Rektorn deposit was mined specifically for apatite during 1942-1946
(Geijer 1950).

Malmberget is situated approximately 75 km south-southeast of Kiruna (Fig. 32) and is the second
largest of the apatite-iron oxide deposits in Norrbotten, mined since the late 19th century. The deposit
comprises 20 ore bodies distributed over an underground area of about 5 x 2.5km, of which 10 are
currently mined. The main ore zone has a length of about 5 km (Bergman et al. 2001). In contrast to
Kiruna, the Malmberget ores and host rocks are extensively deformed and metamorphosed. Average
phosphorus content has been stated as less than 0.8% (Grip & Frietsch 1973).

Levedniemi, near Svappavaara, some 40 km southeast of Kiruna, is the third largest deposit in
Norrbotten. Its magnetite ores exhibit relatively low general phosphorus content, at approximately
0.1%, but can be locally higher, up to 1.1%, and contain apatite veins in the northern part (Bergman
etal. 2001). LKAB is currently expanding in the Svappavaara area, and three mines are currently (2017)
in operation here, i.e. Mertainen, Gruvberget, Levedniemi (Fig. 32).

Many of the numerous other, hitherto untouched apatite-bearing iron ore deposits in Norrbotten, may
also have potential for REE exploration. One of these is the Pattok (Pattovare) deposit, located about 40km
southwest of Kiruna (Fig. 32), which consists of a hematite and apatite-rich mineralisation, with an average
of 2.5% phosphorus, and containing some 40 Mt of ore down to the 200 m level; it was suggested (without
references to analyses, etc.) by Hammergren (1988, unpublished eport) to be potentially REE-rich. Grip &
Frietsch (1973) noted that Pattok is the only high-phosphorus apatite-iron oxide ore outside the Kiruna area.
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REE mineralisation

Apatite, typically as fluorapatite, is obviously a very important mineral in the apatite-iron oxide depo-
sits. It is variably abundant, both within and between deposits; e.g. at Kiruna, the content of phospho-
rus is bimodal, being either less than 0.05% or higher than 1% in recently mined ores (Bergman et al.
2001); Geijer (1931), on the other hand, stated that the magnetite ore in the upper parts of the Kiruna
deposit contained at least 2% phosphorus, equivalent to almost 11% apatite. Characteristic of apatite-
iron oxide deposits, Siand (Y+REE) in fluorapatite exhibit a distinct correlation, as opposed to Na and
(Y+REE) (cf. Harlov etal. 2002b, Jonsson et al. 2016). This correlation is the result of REE incorporation
in the fluorapatite by the coupled substitution Sis. + (Y+REE)s, —> Ps.+ Ca.. (Pan & Fleet 2002).

The first observation of anomalously high REE content in the Kiruna-type ores was made by Geijer
(1931), who reported “0.88 per cent cerium earths in an ore sample from Kiirunavaara, and 0.99 per
cent of the same and 0.05 per cent yttria earths in an impure sample from Rektorn on Luossavaara”.
These analyses were performed as a test, after the publication of Boldyrev (1930), who had presented
new analytical results showing high REE content in apatite associated with iron ores in the Urals.
Additionally, Geijer (1931) also mentioned “orthite” (i.e. allanite sezsu lato) occurring in the apatite
bands of the Ekstromsberg ore, and in the Hauki hematite ore (Kiruna area).

Landergren (1936, 1948) published some new spectrographic analyses of ores from Kiruna and
Malmberget (given as “Gillivare”), which included some rare earths.

Renewed interest in the occurrence of REEs in the Norrbotten ores led to new analyses in the 1960s.
Using X-ray spectroscopy, Pardk (1973) reported the following “total” REE metal content of apatite-
iron oxide ores from northern Sweden: Kiirunavaara 6560 ppm, Malmberget 5760 ppm, Levedniemi
1545 ppm, Rektorn 3275 ppm, Haukivaara 5295 ppm, Henry 5210 ppm, Nukutusvaara 6730 ppm,
and Lappmalmen 5890 ppm. These figures were based solely on the analysed content of cerium, lan-
thanum and yttrium. Pardk also noted the correlation between the occurrence of increased REE and
phosphorus contents, as Geijer (1930) had done, and the occurrence of other REE-bearing minerals,
and specifically monazite, as inclusions in the apatite. Additionally, the presence of xenotime in the
Per Geijer ores was suggested, but not proved.

Andersson (1972) stated that REEs in the Tuollavaara deposit near Kiruna were principally carried
by apatite and monazite. Like other deposits of this type, the Kiruna and other deposits of Norrbotten
show a pronounced relative abundance of the light REEs, in particular cerium, lanthanum and neo-
dymium, whereas the heavy REEs (except for yttrium) exhibit relatively low abundances (e.g. Pardk
1973, Harlov etal. 2002b). Frietsch & Perdahl (1995) supplied more complete REE datasets on apatite
and magnetite concentrates from Kiruna and other apatite-iron oxide ores, ranging from 2000 to
7000 ppm total REE; they also noted the similarities in patterns between different ore types, despite
variable total content, as well as similarities to mineralised host rocks.

Host rocks of the northern district (Kiruna and Svappavaara) generally show negative Eu and strong
enrichmentin LREE (Fig. 34). Lundh (2014) demonstrated that samples from the Malmberget district
do not show negative Eu anomalies, apart from one sample (Fig. 35).

Thus, like many other apatite-iron oxide ores worldwide, we know that (at least the better studied)
Norrbotten deposits (essentially Kiruna) contain partially REE-substituted fluorapatite, from which
quite a significant portion of the primary REE content has been remobilised into secondary minerals
by means of fluid-mediated processes (Harlov et al. 2002b, Jonsson et al. 2016, and references therein;
see also section on the apatite-iron oxide ores in Bergslagen). The major secondary minerals in the
Kiruna deposit are monazite-(Ce) and allanite-(Ce) (Harlov et al. 2002b), but xenotime has also been
reported (e.g. Andersson et al. 2016). Thorite with a moderate enrichment in heavy REEs was noted
by Palsson et al. (2014)

Harlov et al. (2002b) reported content of a suite of REEs from electron microprobe (EPMA) ana-
lyses of ore-hosted fluorapatite from the Kiruna mine, e.g. Y,0; 0.01-0.06 wt%, La,05 0.02—0.18
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wt%, Ce,0; 0.02-0.46 wt%, and Nd,O; 0.02—-0.20 wt% (minimum and maximum averages of
several, n=4 to 18, point analyses in different zones of fluorapatite grains/crystals from three different
ore types), and also EPMA data for monazite-(Ce) and allanite-(Ce). Based on their analyses (including
both EPMA and laser-ablation ICP-MS) and textural studies, they concluded that fluid-mediated
remobilisation was responsible for variable depletion in the REE content of the Kiruna apatites. With
regard to the overall highest content of REEs measured, in a BSE-bright zone in this apatite, Harlov
and colleagues suggested that the original (primary) content was likely to have been in the region of

at least 7000—-8000 ppm total REE+Y.
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Processing and extraction

As far back as 1889 small amounts of apatite-rich rocks were test-mined at Malmberget and elsewhere
(Berg et al. 1890), albeit with the sole aim of assessing the potential for extraction of phosphorus.
Besides the above-mentioned production of apatite from the Rektorn deposit in the 1940s, by-product
apatite was also produced at Malmberget during the two world wars and in 1952-1953, in Kiruna
between 1942 and 1946, and lastly in 1985-1988, when some 0.5 Mt of apatite concentrate was produ-
ced by flotation (Bergman et al. 2001, and references therein). Hammergren (1988, unpublished report)
reported that at that point Kiruna produced some 130,000 tonnes of apatite concentrates (“yearly”),
which were exported to Norsk Hydro in Norway.

Hammergren also stated that, besides apatite in remnant ore in the mine, some 0.7 Mt of apatite
was present in tailing ponds at Kiruna, containing some 3.3 tonnes of REE oxides. Later, Palsson &
Fredriksson (2012) reported the ponded tailings at Kiruna to have average grades of 4-8% P,05 and
1200-1300 g/t REE. Extensive sampling programmes on these tailings, coupled with mineralogical/
chemical characterisation as well as flotation tests, have been performed by LKAB/consulting compa-
nies, and LT'U (cf. Pilsson & Fredriksson 2012).

Andersson (1972) reported total REE content of apatite concentrates from the Tuollavaara mine of
between 3000 and 4800 ppm, with an average of 3700 ppm, while a representative sample of waste
material for the tailings during one week in 1970 contained 1070 ppm total REE oxides at 1.8%
phosphorus.

During more recent assessments of the potential for REE extraction from Kiruna apatite, Sandstrém
& Fredriksson (2012) produced a flotation concentrate with 0.44% total REE oxides that was tested
via different routes including acids and solvent extraction to arrive at an REE concentrate. These tests
showed the feasibility of REE extraction from Kiruna apatite, specifically when combined with ferti-
liser production. In a study of apatite and associated minerals from tailing ponds and low as well as
high-phosphorus ore from Kiruna, Pélsson et al. (2014) found an average REE content of fluorapatites
of 0.25 wt% (taking only Ce, La and Nd into account; EPMA and LA-ICP-MS point analyses),
whereas analyses of bulk samples of apatite concentrates gave total content of (complete) REE oxides
of between 0.45 and 1.04 wt%. Successive flotation experiments on these materials by Pélsson and
colleagues yielded moderate recoveries, and it was noted that REE did not fully follow apatite (or
phosphorus content), suggesting the presence of one or more additional host minerals for REE that
were lost in the process. Allanite was indicated as the potential (main) culprit, as had also been sug-
gested previously by Palsson & Fredriksson (2012).

REE mineralisation in apatite-iron oxide deposits, Bergslagen ore
province, south-central Sweden

The apatite-iron oxide deposits of central and southern Sweden are represented only by a small number
of deposits in the northwestern part of the Palacoproterozoic Bergslagen ore province, south-central
Sweden (Fig. 36). The largest of these — Gringesberg, Blotberget and Idkerberget — have been mined
extensively, and constitute the largest iron ore concentration in Sweden, outside of the northernmost
province of Norrbotten (which hosts the currently operating Kiruna and Malmberget mines, among
others; see that section). Based on their overall mineralogy, geochemistry, geometry and relationships
with the host rocks, these Bergslagen deposits clearly represent Kiruna-type deposits (e.g. Jonsson et al.
2010a). Besides iron in the form of magnetite and hematite, fluorapatite and associated rare earth-
bearing phosphates and silicates in these ores represent a significant potential reserve of REEs as well as
of phosphorus. The following text concentrates on the Gringesberg district, since this is the largest of
the deposits (with a past production 0f 152 Mt iron ore at 58% Fe and 0.81% P; e.g. Hallberg et al. 2000),
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Figure 36. Simplified bedrock geology map of a part of northwestern Bergslagen, showing the locations of the major
apatite-iron oxide deposits (and one minor deposit —Haggruvan).

and currently also the most-studied one. Gringesberg was the last of these mines to be in operation
and closed in 1989, despite plenty of remaining ore. Recent plans to restart operations are fairly well-
advanced (see http://grangesberg.com/index.php).

Even at an early stage of mining and study, the deposits of the Gringesberg district were compared
to those of the Kiruna area (e.g. Loostrom 1929), i.e. the “type locality” of the Kiruna-type ores, and
a source of scientific controversy for more than 100 years (e.g. Johansson 1910, Pardk 1975, Hitzman et
al. 1992, Nystrom & Henriquez 1994, Jonsson et al. 2013, and references therein).

Significant rare earth element concentrations are present in the ore-associated apatite in the Gringes-
berg mines, and although this was noted, and analyses and experimental concentration tests were
performed when the mine was in operation (cf. Back 1991), it never led to any full-scale beneficiation.
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Geology and deposits

The overall host rocks for most of the Bergslagen ores comprise mainly felsic, regionally metamor
phosed c. 1.90-1.87 Ga volcanosedimentary rocks (the leptite-hilleflinta formation of old; cf. Stephens
et al. 2009; geology section in this report). In the Gringesberg—Ludvika area, the metasupracrustal
rocks comprise units of clastic sedimentary origin as well as of direct volcanic and subvolcanic origin,
all multiply deformed and metamorphosed to amphibolites facies grade (cf. Stromberg 1988, Stromberg
& Sukotjo 1988; Hogdahl et al. 2013). The immediate host rocks to the apatite-iron oxide ores, parti-
cularly around the Gringesberg deposits, exhibit substantially more intermediate to basic compositions
(cf. Geijer & Magnusson 1944; Jonsson et al. 2010b; Jonsson et al. 2011; Nilsson et al. 2013). These
metavolcanic rocks are locally feldspar-porphyritic, fine-grained and range between rhyolitic-dacitic
to basaltic-andesitic in overall composition. Relative to average crust, the Gringesberg iron oxide ores
are typically enriched in Th, U, La, Ce, Nd, P, Fe, Sm, Tb, Y, Tm and Yb, and depleted in Ba, Sr
and Ti. K and Zr are variably depleted. The apatite-iron ore is enriched in REE to varying degrees, as
is typical of this type of deposit (e.g. Frietsch & Perdahl 1995), particularly so in the LREEs.

Alteration is evident in the host rock metavolcanics, both in the form of regional sodic or potassic
alteration and locally, as disseminated and discrete phyllosilicate (mainly biotite + chlorite) and amphi-
bole-rich zones. Localised alteration in these zones and the immediate host rocks is also manifested
by their increased REE content, featuring similar REE patterns to the ores and associated apatite-rich
assemblages (Jonsson et al. 2011, 2013).

The smaller iron oxide mineralisations in the Kopslahyttan area, and specifically that at Haggruvan
(Fig. 36; Geijer & Magnusson 1944) are locally enriched in REE, and most likely represent an eastern
continuation of the apatite-iron oxide deposits at Idkerberget (Jonsson et al. 2015), a view also sup-
ported by interpretations of the available acromagnetic maps of the region.

REE mineralisation

Aslongago as1948 Landergren reported some partial rare earth element analyses from the Gringesberg
iron ores and others, showing their general REE-enriched nature. Relatively high REE content in the
ore-associated apatite in the Gringesberg deposit were found later, with reported total Ce+La+Nd+Y
oxides of up to between 5800 and 7700 ppm (Back 1991). Analyses of apatite from the Risberg field in
Gringesberg yielded 1340 ppm Ce, 420 ppm La, 980 ppm Nd, and 1270 ppm Y, according to Anders-
son (1972, unpublished report). It was furthermore noted that REEs were also hosted by allanite and
monazite, but despite the presence of allanite (sezsu lato), the correlation between increased REE and
P contents still suggested that the bulk of the REEs were primarily carried by phosphate minerals
(Andersson 1972, 1974, unpublished reports; Back 1991).

As noted previously, fluorapatite is a key mineral in the apatite-iron oxide deposits. In the Gringes-
berg ores it mostly occurs as relatively fine-grained aggregates, bands or subhedral, elongated, bleb-like
crystals distributed in the Fe oxide ore. Often the fine-grained apatite, together with associated silicates,
exhibits a banded/foliated or schlieren-like structure in the ore (Fig. 37). Characteristic of these depos-
its, Si and (Y+REE) in fluorapatite exhibit a distinct correlation, as opposed to Na and (Y+REE)
(cf. Harlov et al. 2002b; Jonsson et al. 2016). This correlation is the result of REE incorporation in the
fluorapatite by the coupled substitution Si4* + (Y*REE)3* = P>* + Ca?* (Pan & Fleet 2002).

In the Gringesberg (Export field) ores, the characteristically granular fluorapatite is typically high
in Ce, La, Nd, and Y. REEs are also carried by monazite-(Ce), xenotime-(Y), allanite-(Ce) and
variably REE-enriched epidotes sensu stricto, as well as in Ce-dominant REE fluorocarbonates of the
synchysite-bastnisite-type; a gadolinite-(Ce)-like phase has also been observed (Jonsson et al. 2010b;
Majka et al. 2013; Jonsson et al. 2016). Among the immediate and variably altered host rocks that
exhibit enrichment in the REEs, these are primarily found concentrated in allanite-(Ce), fluorapatite
and monazite-(Ce).
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Figure 37. Banded apatite-mag-
netite ore from the Grangesberg
Export field. Section of drill core,
image width approximately 5cm.
Photo: Erik Jonsson.

Based on mineralogical and mineral-chemical studies, including high-quality microprobe data,
fluorapatites in Gringesberg are generally chemically and texturally variable, and contain between about
0.5 up to almost 2.5 wt% (Y+REE),O; (Jonsson et al. 2016); the most likely interpretation of the vari-
able REE contents and observed textures is that the primary REE content of many of the fluorapatites
has been depleted by post-crystallisation fluid overprinting (Figs. 38, 39). Thus, the associated REE-
bearing phosphates (monazite, xenotime) and silicates (allanite) primarily formed through fluid-mediated
remobilisation of REEs from fluorapatite, and subsequent formation of these secondary, REE-enriched
phases (Majka et al. 2013; Jonsson et al. 2016). The REE fluorocarbonates formed under even later, low-
temperature geological conditions (e.g. Jonsson et al. 2010b). Bulk geochemical analysis of dump samp-
les, in part carrying megascopically visible apatite, yielded up to 0.7 wt% total REE (Hogdahl etal. 2015).

Overall, the Gringesberg fluorapatites exhibit the following ranges in content of discrete REEs
(average of 481 electron microprobe point analyses, all in wt% oxide): Ce 0.01-0.6; La 0.01-0.2; Nd
0.03—-0.39; Pr 0.02—0.13; Y 0.02—0.24; all others were below the analytical detection levels (Nilsson et
al. 2013; Jonsson et al. 2016). Average total REE content for apatite from discrete assemblage types
ranges from 0.19 wt% (Y+REE),O; in an altered metavolcanic rock (phyllosilicate-rich alteration
assemblage) to between 1.7 and 2.5 wt% (Y+REE),Oj; in apatite-rich units in magnetite ore (Majka et
al. 2013; Jonsson et al. 2016). Allanites occurring in association with the oxide ores are primarily rich
in Ce and La. As expected, monazite carries appreciable amounts of REE, mainly Ce, and has been
found to be an important accessory REE mineral; however, the abundance of monazite within and
associated with fluorapatite varies significantly between samples. Xenotime-(Y) contains significant
Y+HREE, but is less common than monazite and allanite.

Initial studies suggest similar general REE mineralogies in the Blotberget and Idkerberget deposits
(Jiao 2011, Jiao et al. 2012, Sahlstrom 2012; Hogdahl et al. 2015).

In Blotberget, REEs in the magnetite ore are hosted by fluorapatite, monazite-(Ce), allanite-(Ce)
and xenotime-(Y) (Jiao 2011, Jiao et al. 2012). Based on bulk geochemical analyses of drill cores, rela-
tively fluorapatite-rich samples from Blotberget exhibit a total REE content of between approximate-
ly 200 and 3000 ppm. Chondrite-normalised plots show a characteristic enrichment in La, Ce, Pr, and
Nd, slight to moderate relative depletions in Eu, and flat trends for Gd to Lu. Bulk geochemical
analyses of dump samples yielded up to 0.3 wt% total REE (Hogdahl et al. 2015).
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Figure 38. Back-scattered electron (BSE) image of an
aggregate of fluorapatite (in different shades of grey) in
magnetite-apatite ore from the Export field, Grangesberg
(white areas are magnetite). The lighter zones, particularly
in the fluorapatite in the centre, have increased REE
content; it is suggested that the texture of this variable
zoning is due to a similarly variable extent of fluid-media-
ted remobilisation of REEs at a late-magmatic to regional
metamorphic stage. The white scale bar at lower left
equals 200 micrometres. Photo: Erik Jonsson.

Figure 39. Back-scattered electron (BSE) image of fluor-
apatite (grey) in magnetite-apatite ore from the Export
field, Grangesberg. The small white inclusions in the
centre of the image consist of monazite-(Ce) and minor
xenotime-(Y). Larger grains or crystals in the outer parts of
the fluorapatite are monazite-(Ce). This texture is interpre-
ted to be the result of fluid-mediated remobilisation of the
originally fluorapatite-hosted REEs into later-formed REE
phosphates, subsequently in part modified by Ostwald
ripening-type processes, which led to the growth of fewer
and bigger monazites in the outer part of the fluorapatite
grains. The white scale bar at lower left equals 200
micrometres. Photo: Erik Jonsson.

At Idkerberget, samples studied show REE-enriched fluorapatite, as well as monazite-(Ce) and alla-
nite-(Ce). The observations here of discrete Th-bearing phases as well as thorium in the form of a sub-
stituent in monazite are notable and somewhat unexpected (Sahlstrom 2012), since monazites formed
through REE remobilisation of fluorapatite are normally (very) low in thorium. Bulk geochemical
analyses of dump samples from Idkerberget yielded up to 0.1 wt% total REE (H6gdahl et al. 2015).

The main carriers of the rare earths in the apatite-iron oxide mineralisation at Haggruvan, Kopsla-
hyttan area, south of Borlinge (Fig. 36), are monazite-(Ce), allanite-(Ce), and REE-enriched epidote,
as well as rare xenotime-(Y) (Fig. 40); apparently the fluorapatite does not harbour any REE above the
detection limits of the EDS analytical system used (Jonsson et al. 2015). Accessory titanite in the
slightly altered host rocks may contain small amounts of yttrium. Bulk geochemical analyses of dump
samples yielded up to 1 wt% total REE (Hogdahl et al. 2015).

Processing and extraction

Hammergren (1988, unpublished report) stated that 80,000 tonnes of apatite concentrates from Gring-
esberg were exported “yearly” to Norsk Hydro, in Norway at that time, and that Gringesberg apatite
contained an average of 0.75% REE oxides (as compared with 0.5% in Kiruna apatite). He also repor-
ted that the remnant apatite in the tailings at Gringesberg was 300,000 tonnes, representing some
2,300 tonnes of REE oxides. Since not much activity took place after this, these are likely to be reaso-
nable estimates of the tailings currently remaining there.

Based on then ongoing separation of apatite, and experimental work including flotation of apatite
ores, Andersson (1972) noted that a significant to major proportion of REEs from Gringesberg were
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Figure 40. Back-scattered
electron (BSE) image showing a
rounded-lensoidal fluorapatite
(FAp) grain in contact with
magnetite (Mt); the fluorapatite
exhibits a characteristic texture,
containing several BSE-white,
epitaxially oriented crystals of
monazite-(Ce). The scale bar
equals 30 micrometres. Hag-
gruvan, Kopslahyttan area
(6694893/ 521413). Photo: Erik
Jonsson.

lost in the process, as monazite was separated out of the apatite concentrate, the latter only containing
about 35% of the total incoming REEs; if all REE-bearing materials were to remain in the apatite
concentrates, it was estimated that the content would be around 1.2 wt% total REE oxides. Similar
proportions were found for the Blotberget and Idkerberget mines. In the case of Blotberget, for instan-
ce, this meant that about 70% of the REEs in the bulk incoming material ended up in the waste
tailings, whereas at Idkerberget, some 63% went into the iron ore concentrate.

It was also noted in comparison that at that point the Typpi Oy Company in Finland was —seemingly
successfully — recovering REEs during the process of making phosphoric acid from apatite imported
from the Kola peninsula (Russia), with a total REE content similar to that of the Gringesberg apatite.

The REE-Fe mineralisations of the Olserum area, southeastern Sweden

The REE mineralisations of the Olserum area were discovered only fairly recently and represent one
of the deposits offering most economic potential in Sweden, after the nepheline syenite-hosted deposit
at Norra Kirr. Aside from Norra Kirr, Olserum is the only REE deposit in Sweden with a classified
mineral resource.

The Olserum mineralisation is located some 30 km northwest of Vistervik in southeastern Sweden
(Fig. 41). It represents an unusual type of hydrothermal mineralisation, rich in high-grade REE phos-
phates.

These mineralisations were in fact first noted with respect to rare metals in the 1950s, when the
company Stora Kopparberg AB investigated the presence of uranium in association with iron ores in
the area. Several small uranium mineralised areas were discovered, but none was regarded as of eco-
nomic importance. In the 1970s SGU continued to explore for uranium in the region, during which
period several occurrences of apatite with anomalous yttrium content were documented.

Yet, mining of magnetite-dominated iron oxide ores had begun quite some time before, at least as
early as 1745, when the Djupedal mine was reported to yield fairly good iron ore (Hoppe 1884). The
more important (of these generally small and now abandoned) iron mines in the area are concentrated
along a north-northwest—south-southeasterly trend, and mainly comprise Djupedal, Olserum (Olovs-
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Figure 41. Simplified bedrock geological map showing the locations of Olserum and other REE mineralisations in this area.

rum), and Killhagen (Brotorp), of which the Olserum mines were the largest (Geijer & Magnusson
1944). All of these mines are located within the border zone between Vistervik formation metasedi-
mentary rocks in the south, and granitoids belonging to the Transscandinavian Igneous Belt in the
north (Figs. 41, 42; TIB; Hogdahl et al. 2004). The potential link between TIB magmatism and the
formation of the Olserum area REE Fe mineralisations has been somewhat uncertain and debated,
and is the topic of ongoing research (cf. Andersson et al. 2018a,b).

The occurrence of REE in sizeable concentrations associated with iron oxide mineralisation in the
Olserum area, enough to have economic potential, was realised only relatively recently, however. In
the early 1990s, the state-owned company SGAB (Sveriges Geologiska AB) followed up earlier SGU-run
uranium exploration, but now with the purpose of identifying and classifying rare earth occurrences
in Sweden. The anomalous yttrium contents in the area were noted at this point. SGAB followed up
with site visits and sampling in the area, confirming the presence of heavy rare earth-enriched miner-
alisations in the Olserum area, in magnetite-apatite bearing, uranium anomalous mine dump mate-
rial, as well as veins in outcrops (Gustafsson 1990, 1991, unpublished reports).
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Figure 42. Bedrock geological map of the Olserum area with known mineralisations marked; the most important are

named (Brotorp is also known as Kallhagen).

The identification by SGAB of a number of iron oxide-magnetite vein-associated targets with high REE
content, of which a significant proportion comprised the sought-after HREE (Gustafsson 1991, unpublis-
hed report), did not lead to any significant activity at that point. A decade or so later, further exploration
and drilling by IGE Nordic, and subsequently Tasman Metals, in the area led to the identification of a
mineralised zone open at depth (e.g. Reed 2013, unpublished report,). This, the Olserum deposit as outli-
ned by Tasman Metals, covers only part of the known mineralised area. It has an indicated resource of 4.5
Mt at 0.6% TREO with 33.9% HREO (Reed 2013, unpublished report). In addition, all of the old iron
mines mentioned above carry (some) REE mineralisation, and several additional small prospects/pits, along
with outcrops that have not been worked, show the same type of REE-enriched apatite-magnetite mine-
ralisation, predominantly comprising fluorapatite, monazite-(Ce) and xenotime-(Y).

The major, megascopic mineral hosts of REE in the Olserum area are monazite-(Ce), xenotime-(Y),
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Figure 43. Coarse, subhedral
yellowish crystal aggregates of
monazite-(Ce) in a biotite-
apatite-magnetite vein in a drill
core from the former Tasman
Metals resource in Olserum.
Photo: Erik Jonsson.

Figure 44. Biotite-apatite-magne-
tite vein(s) with local concentra-
tions of coarse, subhedral
brownish crystal aggregates of
xenotime-(Y) in the upper central
part of the image. Abundant, dull-
white fluorapatite is also readily
apparent. Outcrop in the former
Tasman Metals resource in
Olserum (c. 6423926/579862).
Photo: Erik Jonsson.

and REE-bearing fluorapatite, whereas allanite-(Ce)/ferriallanite-(Ce) and REE fluorocarbonates are less
abundant. Overall, the first-mentioned phosphate minerals predominate, and both the monazite and the
xenotime can occur as impressively large individual crystals, up to at least 7 cm in length (Figs. 43—45).

An estimate of the type and proportions of minerals in the Olserum mineralisations based on MLA
analysis is shown in Table 5.

Recent studies have revealed new mineralogical details about the Olserum—Djupedal mineralisations,
the main associated minerals being biotite, quartz, cordierite, muscovite, magnetite, tourmaline and
anthophyllite (most likely the “gedrite” reported in Table 5), and accessory minerals including ilme-
nite, rutile, hematite, pyrite, chalcopyrite, galena, staurolite, epidote, ferberite, zircon, uraninite, tho-
rite and unidentified REE-Y-Nb-W-U oxides, occurring in a complex and protracted paragenetic
sequence (Andersson et al. 2016b, Andersson et al. 2017, 2018a).
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Table 5. Modal mineralogy (determined by MLA) of a
composite sample representing the mineral resource at
Olserum (source: Tasman Metals AB — unpublished
data). Marked numbers show common REE-bearing
minerals in Olserum.

Mineral Wit%
Quartz 4789
Biotite 19.66
Albite 1.9
Gedrite 3.96
Cordierite 3.27
Apatite 2.59
Magnetite 2.29
Andalusite 212
Staurolite 1.05
Illite 0.92
Cummingtonite 0.9
Clinochlore 0.65
Monazite 0.61
K-feldspar 0.54
Xenotime 0.31
Muscovite 0.29
Tourmaline 0,25
Allanite 0.07
Siderite 0.06
Unclassified 0.06
Calcite 0.04
IImenite 0.04
Zircon 0.02
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Figure 45. Coarse, tectonised
crystals of reddish-brown
xenotime-(Y) in a magnetite-
biotite(-apatite) groundmass,
in a dump boulder at the
Djupedal mine, Olserum area
(6425437/578432). Photo: Erik
Jonsson.



While it has been suggested that a number of REE-bearing iron oxide mineralisations (e.g. Klockar-
torpet and Sodra Grinso) south of Olserum, within the more homogeneous Vistervik formation rocks,
represent palacoplacer (metamorphosed heavy sand) deposits (e.g. Welin 1966; see separate section in this
chapter), such an origin has also been loosely suggested for Olserum (e.g. Gustafsson 1990, 1991, unpu-
blished reports). The deformed and partly migmatitic, gneissic nature of much of the rock in the Olserum
area makes clear-cut interpretation difhicult, but the overall relatively unambiguous vein-type character
(Figs. 43 and 42) of the REE-rich magnetite-apatite mineralisations prove their epigenetic nature. That
tectonic activity continued after vein formation is evident from the brittle tectonisation of individual
minerals (Figs. 43 and 45), as well as the deformation, including faulting, of the actual veins.

It is unclear at present whether the metals that formed these deposits by means of hydrothermal
fluids originated from pre-existing palacoplacer deposits, or from the TIB magmas; yet, the former
seems unlikely considering not least the metal flora involved. Trace element studies of magnetites
associated with several of these deposits in the Vistervik area show significant differences between the
Olserum (vein-style) mineralisations and one of the relatively few clear-cut palacoplacers, Klockartorpet
(Andersson et al. 2016a). The most in-depth and recent study suggests that the Olserum area minera-
lisations formed from a hydrothermal system that was directly caused by the nearby TIB intrusives
(Andersson et al. 2018b).

The mineral resource was modelled by Reed Leyton Consulting (2013, unpublished report,), using six
different total rare earth oxide (TREO) cut-off grades, with a base-case resource estimated usinga TREO
cut-off of 0.4% (Tables 6 and 7). At this cut-off, Olserum hosts an indicated mineral resource of 4.5 million
tonnes grading 0.60% TREO and an inferred mineral resource of 3.3 million tonnes grading 0.63% TREQ,
both with 34% of the TREO being the higher value HREO (heavy rare earth oxide). Tables 6 and 7 show
the grade averages for rare earth oxides at the various cut-offs (source of table 8 and 7: Tasman Metals AB).

Table 6. Indicated resource estimate for the Olserum deposit (Tasman Metals AB, 2013).

TREO% Million TREO% % of HREO  Dy,0; Y,0, Nd,0, Tonnes of
Cut-off Tonnes in TREO ppm ppm ppm TREO
contained
0.7 1.0 0.89 323 292 1800 1314 8,620
0.6 1.7 0.78 32.9 262 1610 146 13,360
0.5. 3.0 0.68 333 232 1420 996 20,650
0.4 4.5 0.60 33.9 209 1283 878 27,260 BASE CASE
0.3 6.3 0.53 344 187 146 769 33,530
0.2 77 048 34.5 0.017 1042 700 37,030

Table 7. Inferred resource estimate for the Olserum deposit (Tasmet Metals AB, 2013).

TREO% Million TREO% % of HREO  Dy,0; Y,0; Nd,0, Tonnes of
Cut-off Tonnes in TREO ppm ppm ppm TREO
contained
07 0.9 0.85 31.8 288 1667 1294 7947
0.6 1.6 0.77 325 264 1547 1151 12,088
0.5. 2.5 0.69 33.6 242 1445 1018 16,960
0.4 3.3 0.63 33.7 222 1320 925 20,770 BASE CASE
03 4.2 0.57 339 202 1205 841 23,820
0.2 47 0.54 33.9 191 1134 790 25,050
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The Fe-REE (Bastnas-type) deposits of the REE line, Bergslagen ore
province, south-central Sweden

The Bastnis-type Fe-REE deposits are early Proterozoic, skarn-hosted iron oxide (magnetite-dominated),
locally polymetallic (+ Cu, Au, Co, Bi, Mo...) mineralisations that in part carry very REE-rich assem-
blages (cf. Geijer 1961; Holtstam & Andersson 2007). They are located in the Bergslagen ore province,
and characterised by the occurrence of locally abundant REE-rich silicate minerals such as cerite-(Ce)
and allanites (sezsu lato), but also include REE fluorocarbonates such as bastnisite-(Ce). Overall,
these deposits exhibit a quite complex and diversified REE mineralogy, dominated by silicate minerals
(Table 8). The deposit type was named after the Nya Bastnis mining area (Geijer 1961), the site of the
original discovery of cerium (Hisinger & Berzelius 1804), and the type locality for numerous REE
minerals (e.g. bastnisite-(Ce), cerite-(Ce), tornebohmite-(Ce) and several others (cf. Holtstam & Anders-
son 2007, Holtstam et al. 2014, and references therein). Additionally, the Ceritgruvan mine in the Nya
Bastnis field was most likely the first hard-rock deposit specifically worked for rare earth elements.

Table 8. REE minerals in the Bastnas-type deposits (REE line) and their chemical formulae.

Mineral General formula

Allanite-(Ce) Ca(Ce, LREE)Fe2*AL[SiO,][5i,0,]0(OH)
Bastnasite-(Ce) (Ce,LREE)(CO5)F

Bastnasite-(La) (La,LREE)(CO;)F

Cerianite-(Ce) (Ce,REE)O,

Cerite-(Ce) (Ce,LREE,Ca)q(Mg,Fe)[SiO,]6[SiO;OH](OH),
Delhuyarite-(Ce) (Ce,LREE) ,Mg(Fe,W)[1[Si,0,],04(0H),
Dissakisite-(Ce) Ca(Ce,LREE)MgAI,[SiO,][Si,0,]O0(0OH)
Dollaseite-(Ce) Ca(Ce,LREE)Mg,Al [SiO,][Si20;]F(OH)
Ferriallanite-(Ce) Ca(Ce,LREE)Fe3+AlFe?*[SiO,][Si,0;]O(OH)
Ferriperbgeite-(Ce) Ca(Ce,LREE);(Fe3*Al2Fe?*)[Si,0][Si0,];0(0H),
Fluocerite-(Ce) (Ce,LREE)Fy

Fluocerite-(La) (La,LREE)F,

Fluorbritholite-(Ce) Ca,(Ce,LREE)5[SiO,]5F

Fluorbritholite-(Y) Ca,(Y,REE);[SiO45F

Gadolinite-(Ce) (Ce,LREE,Y),FeBe,Si,049

Gadolinite-(Nd) (Nd,Y,REE,),FeBe,Si, 0y

Gadolinite-(Y) (Y,REE,),FeBe,Si, 04

Haleniusite-(La) (La,LREE)OF

Hingganite-(Y) (Y,REE,),Be,Si,0g(0OH),

Lanthanite-(Ce) (Ce,LREE)(CO;)5F - 8H,0
Magnesiorowlandite-(Y) (Y,REE),MgSi,Oy,F,

Monazite-(Ce) (Ce,LREE)(PO,)

Parisite-(Ce) Ca(Ce,LREE),(CO;)5F,

Percleveite-(Ce) (Ce,LREE),Si,0;

Synchysite-(Ce) Ca(Ce,LREE)(CO;),F

Tornebohmite-(Ce) (Ce,LREE),Al[SiO,4],(OH)
Ulfanderssonite-(Ce) (Ce,LREE);sCaMg,[SiO,];0[SiO;OH](OH,F)Cly
Vastmanlandite-(Ce) (Ce,LREE);Ca(Mg,Fe),Al,SisO19(OH),(F,OH)
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Later, several other skarn-hosted iron ore deposits with (at least partly) similar REE mineralisation,
had become known, and Geijer (1961) concluded that they ought to be (genetically) related and could
be gathered under a common classification and name, i.e. as deposits of the Bastnis type. The deposits/
occurrences he referred to at that time were the Nya Bastnis mines, together with those of nearby
Storgruvan and Hogfors fields, and the Lerklockan railway siding, all near Riddarhyttan, together
with the Malmkirra, Johanna, Ostanmossa, Asgruvan and S6dra Hackspik mines in the Norberg
area. Although not clearly classifying them as Bastnis type, Geijer also remarked on the occurrence
of REE minerals at the Stripdsen copper mine (also near Norberg, not to be confused with the HREE-
Nb-Ta mineral-bearing granitic pegmatite of the same name that was quarried nearby), as well as at
several smaller mines near Knutsbo, further to the northeast.

Notably, in contrast to many other mineralisations with abundantallanite and other REE minerals,
the Bastnis-type deposits (except the Ostra Gyttorp mine) are virtually devoid of radioactive elements;
hence, all REE-rich minerals so far encountered are non-metamict.

Iron, copper, cobalt and cerium ores were mined intermittently in the Riddarhyttan area for at least
600 years, until 1978, when the last active iron (and copper) mine, Bickegruvan, was closed (Ohman
et al. 2004). The last mine in the Norberg area closed in 1981. Overall, iron was the most important
commodity throughout the history of mining in this region, as in most other parts of Bergslagen.

Geology and mineralisation

The Bastnis type deposits all occur in the western central part of the Palacoproterozoic Bergslagen ore
province, forming a discontinuous, approximately 100-km-long, narrow belt for which the name “the
REE line” has been introduced (Jonsson & Hoégdahl 2013).

This belt (Fig. 46) predominantly comprises variably altered felsic metavolcanic, mostly rhyolitic
rocks with carbonate (calcitic and dolomitic marble) interlayers, and is oriented in a northeast—
southwest direction, with moderately to steeply dipping foliation. It extends from the Nora area in the
southwest to close to Avesta in the northeast, with concentrations of deposits in the Fogdhyttan—Nora,
Riddarhyttan—Bastnis and Fagersta—Norberg areas. The Knutsbo area is somewhat “oft” to the north-
east, but is thought to represent an extension of the REE line.

These groupings of REE-rich iron oxide skarn deposits occur together with associated BIF occur-
rences, as well as similar skarn mineralisations without known elevated REE content. The main iron
ore horizons, magnetite-dominated skarns and hematite-dominated banded iron formations, are
stratiform and generally likely to broadly have a volcano-sedimentary origin (e.g. Andersson 2004).
The skarn-hosted mineralisations follow narrow marble horizons within the metavolcanic rocks. Near
the actual deposits, the metavolcanic rocks were strongly hydrothermally altered, and subsequently
transformed during regional (Svecokarelian) metamorphism into cordierite and/or andalusite-bearing
mica schists or “mica quartzites” (e.g. Fig. 47). The main phase of hydrothermal alteration of the
volcanic units probably took place during an early syn-volcanic stage, as is also suggested by the close
spatial association of extensively altered, originally volcanic rocks with rocks that are essentially unal-
tered except for a later (regional) metamorphic overprint.

Ductile folding of host rocks as well as REE-mineralised assemblages has been recorded, and many
of the mineral assemblages in the deposits studied exhibit recrystallised textures, indicating that they
were formed at an early stage of the orogenic evolution (Jonsson & Hogdahl 2013; e.g. Figs. 48, 49).
Later remobilisation of REEs is also indicated at some localities, such as Hogfors, where an older,
folded and recrystallised REE silicate (skarn) assemblage containing cerite-(Ce) and the Fe analogue
of vistmanlandite-(Ce), for example is cross-cut at a high angle by an allanite-(Ce)-bearing quartz vein
(Jonsson & Hogdahl 2013; Fig. 48).

Similarly, allanite (senzsu lato)-bearing quartz vein networks cross-cutting an “ore quartzite” (most
likely a regionally metamorphosed metasomatic alteration rock) were described from the locality
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Figure 46. Simplified bedrock geology map showing the main locations or clusters of REE-rich iron-skarn deposits in the
REE line.

Lerklockan by Geijer (1961). It is unclear at present whether some of the coarser-crystallised, typically
subhedral to euhedral REE minerals (such as one type of bastnisite-(Ce) and some ferriallanite-(Ce))
in the Nya Bastnis deposits belong to such a later stage. Both their general morphology and coarseness
(of individual crystals) may contrast sharply with the predominant finer-grained and recrystallised
appearance of REE mineralisation here and at other Bastnis-type deposits. Similarly, both minerals
usually occur as fine-grained and anhedral grains and masses together with cerite-(Ce), forming the
most commonly observed type of REE-mineralised assemblage at Nya Bastnis.

Within the REE line, at least the central part (Riddarhyttan-Bastnis) shows LREE enrichment,
whereas the northeast (Norberg area) is enriched in LREE and Y + HREE, forming two subtypes of
the Bastnis-type deposits. Subtype 1 is thus represented by the deposits in the central and southern
parts, including the Bastnis mines, and the southwestern part in the Nora area, while subtype 2 is
represented by the deposits of the Norberg area in the northeast (Holtstam & Andersson 2007, Holt-
stam et al. 2014). Silicates are the main hosts of REE in all deposits, although fluorocarbonates such
as bastnisite-(Ce) and synchysite-(Ce) also occur throughout many of them, and may locally be abun-
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Figure 47. Cordierite-blastic,
altered felsic metavolcanic rock
in outcrop at Kéllfallet, Riddar-
hyttan (6632184/529935). Photo:
Per Nysten.

Figure 48. Afolded and recrystal-
lised reddish band of REE silicates
(reddish tone from abundant
cerite-(Ce), in addition to the
presumed Fe analogue of
vastmanlandite-(Ce), for
example) within the banded iron
formation mined at (Stora)
Hogfors (6636536/534256),
north-northeast of the Bastnas
field. The folded REE silicate band
was later cross-cut (and slightly
displaced) at a high angle by a
quartz vein (subhorizontal in this
image), which contains minor
ordinary allanite-(Ce). Photo: Erik
Jonsson.

dant (as in the case of bastnisite-(Ce) at Nya Bastnis). Allanite (sensu lato) and cerite-(Ce) associated
with tremolite-actinolite dominated skarn is common, particularly in the deposits of the southwestern
and central parts of the REE line, whereas dollaseite-(Ce) and fluorbritholite-(Ce) become more impor-
tant in the northeast. Mo-Bi-Co-Cu-sulphides, together with fluorite, occur disseminated in the skarn,
as well as local enrichments of Au-Ag alloys in the deposits of the central part, and most abundantly
at Nya Bastnis.

The origin of the Bastnis-type deposits has been debated over time, and they are now generally
interpreted as being the result of skarn-forming reactions between pre-existing carbonate rocks and
medium to high-temperature, metal-rich (including the REEs) hydrothermal fluids (cf. Andersson et
al. 2013; Jonsson 2013; Sahlstrom et al. 2014, 2015; Holtstam et al. 2014, and references therein;
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Figure 49. Back-scattered electron
(BSE) image of a section from the
folded and recrystallised REE
silicate bands in the banded iron
formation mined at Hogfors.
Small-scale folding can be seen in
the alternating bands of cerite-(Ce)
(light grey/white) and a darker
grey vastmanlandite-like mineral,
most likely the unnamed Fe
analogue of vastmanlandite-(Ce).
Black represents silicates, mostly
amphibole. Photo: Erik Jonsson.

Jonsson et al. 2014). It has been suggested that the formation of local REE silicate mineralisation in
other host rocks, and specifically banded iron formations (BIFs) occurring within the same metasu-
pracrustal package, is potentially related to the same (epigenetic) process, rather than being synchronous
with the formation of the BIFs (Jonsson & Hégdahl 2013). The age of mineralisation is somewhat
contentious, with several indications of an early, syn-volcanic process being responsible (e.g. Sahlstrom
2014, Sahlstrom et al. 2014, 2015, Jonsson & Hogdahl 2013), although other methods (chiefly Re-Os
in molybdenite) yield ages down to c. 1840 Ma (Andersson. 2013, Holtstam et al. 2014). Several recent
observations in mine dump material at Nya Bastnis of molybdenite occurring on late fracture sur-
faces that cross-cut the REE-mineralised skarn suggest that (numerous observations also exist of
molybdenite that is seemingly coeval with the major REE silicate assemblages) this sulphide may in
part have formed much later than the REE magnetite skarn assemblage.

New LA-ICP-MS dating of zircons from the variably altered host rocks to the Bastnds area mineralisa-
tions indicate relatively high ages of these felsic metavolcanic rocks, ataround and over 1.9 Ga (Linders 2016).

Districts and deposits

The Riddarhyttan district

The district around Riddarhyttan (Fig. 50) is intensely mineralised, and includes the best-known
deposit of this type, in the form of the eponymous Bastnis mines (the Nya Bastnis, i.e. New Bastnis
mine field, in contrast to the O/d Bastnis mine field, Gamla Bastnis, which is situated to the immedi-
ate south). However, REE mineralisation in this area occurs at several other locations within the same,
in part strongly altered metavolcanic rock unit, e.g. at Stilklockan, Storgruvan (Bastnis Storgruva),
Hogfors (Stora Hogforsgruvan), and Persgruvan (Fig. 50, Geijer 1923, 1961; Thre & Sidbom 1986,
unpublished report).

EDITOR: MARTIYA SADEGHI
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Figure 50. Simplified bedrock geology map showing locations of mines in the Riddarhyttan field, central part of the REE
line, highlighting those with REE enrichment.

The first record of what would become known as an REE-bearing mineral from Bastnis was pro-
bably by Axel Fredrik Cronstedt in the 1740s, since the word rungsten (“heavy stone” in Swedish, the
origin of the name of the metal W in several languages, tungsten) occurs on a Bastnis specimen label-
led 1746 (Nordenskiold 1873). In 1750 he reported a “dense, reddish rather heavy ironstone and also
described “a black rungsten” containing iron (Tidestrom 1890, unpublished manuscript,). This red
mineral was subsequently described by Cronstedt (1751) and became known as “Bastnis tungsten”
(one of several “heavy stones” with strange or unknown compositions, at that time). Wilhelm Hising-
er and Jacob Berzelius performed analyses on both gadolinite (then known as “ytterbit”, the host
mineral for the first discovered rare earths, in the form of Johan Gadolin’s “yttria” etc. from the
Ytterby pegmatite, published in 1794) and the red mineral from Bastnis. They concluded that a new
element with characteristics similar to “yttria” was indeed present in the mineral from Bastnis. Further
analyses performed in 1803—04 confirmed their initial conclusions. Berzelius initially named the ele-
ment bastium after the locality but renamed it cerium soon afterwards in honour of the newly disco-
vered “planet” Ceres. The cerium-containing mineral thus became cerite following the discovery and
publication of the first known light rare earth element cerium by Hisinger & Berzelius in (1804).
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The Nya Bastnds mine field

The Nya Bastnis field (Fig. 50) comprises a number of discrete mines that worked two parallel ore
horizons, featuring skarn-hosted (polymetallic) ores with locally abundant REE minerals, and banded
iron formations, respectively. The former are magnetite-dominated, and occur as pods in mainly
clinoamphibole-dominated skarn, wholly or partly replacing a carbonate rock (marble) intercalated
within the variably altered felsic metavolcanic rock units (cf. also Ambros 1983). Antophyllite-cordierite-
bearing assemblages also occur. In the southwestern part of the Nya Bastnis field, remnant (unre-
acted) parts of this carbonate horizon are present, according to Geijer (1923). Earlier, Geijer (1921c)
had stated that skarn containing remnants of carbonate rock had also been observed in the dumps at
Nya Bastnis. Efforts to find such carbonate rock material have been made recently, but its presence
could not be verified in the mine dumps still remaining,.

The main ore-bearing horizon, predominantly consisting of magnetite and hematite, has an average
width of 8 m and has been traced at the surface for about 400 m. Within this zone the REE-mineralised
part was up to 0.6 m thick. Rich REE mineralisation was encountered at S:t Goransgruvan (St Goran
mine) and in particular, in Ceritgruvan (the Cerite mine; Fig. 50). The REE deposits here are of a
characteristic, amphibole-rich magnetite skarn type, with locally significant Cu-Co-Ni-Bi-Mo sulphides
as well as minor Te- and Hg-bearing minerals (Holtstam & Ensterd 2002, Ensterd 2003) and gold-
silver alloys. At Bastnis the most characteristic REE mineralisation type comprises either only “allanite”
(mostly ferriallanite-(Ce)), or a typically fairly fine-grained assemblage of cerite-(Ce) and ferriallanite-(Ce),
with variable amounts of bastnisite-(Ce) and tornebohmite-(Ce), for example; a characteristic parage-
netic zoning is often present, featuring fine-grained intergrowths of cerite-(Ce) and other minerals
rimmed by (and seemingly in part replaced by) coarser-grained ferriallanite-(Ce) (Fig. 51).

Based on information in Tidestrom (1890, unpublished manuscript,) and others, the Cerite mine was
originally known as a copper deposit, as seen on a mine map from 1765. The extent of the ore body was
at that time also known from mining compass measurements. In late 1753 A. F. Cronstedt mentioned
the find of native gold by assessor Quist, from the St Goran mine, associated with Co-, Cu-, Bi-ore in
amphibole skarn. Moreover, Tidestrom (1890, unpublished manuscript,) described the ore situation in
the St Géran mine in 1755 as: “in the western part, copper ore being from 0.15 to 0.9 m thick, is accom-
panied by asbestos and “Bastnis tungsten” occurring in pods, to a depth of 30 m. This “heavy stone”

Figure 51. A characteristic REE-rich
assemblage from the Nya Bastnas
field: a fine-grained, light-coloured
mass of cerite-(Ce), with minor
intergrown ferriallanite-(Ce) and
bastndsite-(Ce) is rimmed by
coarser-grained ferriallanite-(Ce),
within a pale green amphibole-
dominated skarn. The cerite-
dominated material in the centre
has become dull and whitish due
to post-mining surface alteration.
Photo: Erik Jonsson.
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consisted mainly of cerite (and, certainly, minor associated ferriallanite etal.) and was replaced downwards
by a less heavy material, reminiscent of hornblende, which proved to be allanite. In 1848 limited efforts
were made to extract “cerite ore”. During the late 19th century the demand for LREEs increased becau-
se of new industrial applications, and therefore mining activity was ramped up in 1886-88, and also
included the reworking of the mine dumps for both cerite- and allanite-rich material. At that time the
mine was 16.8 m deep. It is mentioned that chalcopyrite always accompanied the cerite ore, albeit “in an
erratic manner”. Azurite, malachite, chalcocite and bornite were also associated minerals observed at that
time. The cobalt mineral linnaeite is also mentioned (linnaeite was originally discovered in Bastnis, first
described by Brandt in 1746, while this specific name was not used until the 1840s, however). Drifts were
made towards the St Géran mine and minor amounts of REE ore were found here (Tidestrom 1890,
unpublished manuscript). The St Géran mine produced 287 tonnes of copper ore during 1862—64. This
ore was accompanied by magnetite, quartz, amphibole (in part asbestiform), hornblende and minor
allanite. Minor cerite was also left in the northeastern part of the mine, which was 45 m deep at that time.

According to Geijer (1921c), the REE mineralisation found at the St Géran mine was a “narrow
stripe” associated with the copper sulphide ore, ending at a depth of 30 m; in the Cerite mine, a band
of REE minerals was 0.3 to 0.6 m wide and 6—7 m long. Together with a similar but narrower band,
it ended at a depth of about 20 m in the mine. About 160 tonnes of cerite-dominated ore were produ-
ced between 1860 and 1919 according to Carlborg (1923). However, it is also stated that overall REE
ore production from the Cerite mine was approximately 4,500 tonnes, of which cerite alone accounted
for “several hundreds of tonnes” (Carlborg 1923, Geijer 1921¢). The latter states that “high-grade
cerium ore” was mined during the period 1875 to 1888, with a total production of 4,465 tonnes. Addi-
tionally, later reworking of the mine dumps at Nya Bastnis, during and between the world wars, is
said to have yielded significant amounts of REE ore (B. Hogrelius, personal communication); in 1923
825 tonnes, with an average content of 35% “cerium oxides” was extracted from the mine dumps
(Hogbom 1930, Hallberg 2012). Hammergren (1988, unpublished report) also noted that subsequent
hand-sorting of the old dumps in the 1940s had yielded “some cerite ore”.

Somewhat dramatically, Geijer (1921c) stated that “It [Bastnis] is probably the largest primary
deposit of the cerium metals that has ever been discovered™; this was, however, logical at a time when
most of the sparse REE world production was known and sourced from monazite placer deposits.

Major REE minerals of the Riddarhyttan district

A typical REE-rich assemblage at Nya Bastnis is made up of fine-grained cerite-(Ce), often intergrown
with variable amounts of other REE minerals, most typically fine-grained bastnisite-(Ce) and ferrial-
lanite-(Ce), surrounded by a more coarse-grained outer zone or rim of; often platy, ferriallanite-(Ce),
all hosted by a medium- to coarse-grained, green clinoamphibole (tremolite to actinolite) skarn.
Characteristically, cerite-(Ce) at Bastnis is reddish to pale reddish-grey when fresh, but alters (mainly)
superficially into a dull, chalky white colour, sometimes with a purplish tint. Fine-grained cerite
aggregates (with variable amounts of bastnisite) may also exhibit texturally later veins, or rims, of
ferriallanite, (cf. Geijer 1921¢; Fig. 51), all features suggesting replacement of an earlier-formed, fine-
grained cerite-(Ce) assemblage by ferriallanite-(Ce) + térnebohmite-(Ce) (cf. Geijer 1921c, Holtstam
& Andersson 2007).

Alongside cerite-(Ce), ferriallanite-(Ce) is the most common REE silicate at Nya Bastnis, whereas
“ordinary” allanite-(Ce) is actually quite uncommon (Holtstam et al. 2003b, Holtstam & Andersson
2007). Ferriallanite-(Ce) typically occurs as compact crystalline masses or euhedral platy, unaltered
crystals, with other REE silicates and bastnisite in amphibole skarn. Accessory phases are chalcopy-
rite, bismuthinite, and molybdenite. Allanite-(Ce) is less common at Bastnis, and present as a later-
formed mineral at Hogfors (Jonsson & Hégdahl 2013). It also occurs at Rédbergsgruvan and Ostra
Gyttorp in the Nora area (see descriptions below). In contrast to ferriallanite-(Ce), which commonly
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occurs in close association with minerals such as cerite-(Ce) etc., allanite-(Ce) seems to occur specifi-
cally in assemblages lacking other REE minerals, as observed at both Bastnis and Rédbergsgruvorna
(Holtstam & Andersson 2007).

While vistmanlandite-(Ce) is found mainly in the Norberg area, its iron analogue (as yet not fully
characterised and hence unnamed) is confined to the subtype 1 deposits, as in Nya Bastnis, Rddbergs-
gruvan and Hégfors (Holtstam & Andersson 2007, Jonsson & Hoégdahl 2013).

Bastnisite was described by Hisinger (1838) under the name of “basiskt fluor-cerium”, while
Berzelius'steassidenite is (1825a) description of an orange-yellow, fluorine-bearing cerium mineral from
Bastnis was the first record of this mineral. When fine-grained, this yellow-brown mineral is difficult
to recognise, whereas the coarsely crystalline type occurring as larger individual, platy crystals,
mostly included in ferriallanite-(Ce), is quite apparent. Such crystalline aggregates and crystal sections
are known in sizes of up to over 10 cm across. Bastnisite (senzsu lato) is also known, in lesser amounts
from the Norberg district. Overall, the cerium-dominant mineral is by far the most common, while
sparser, lanthanum-dominated ones have also been identified (Holtstam & Andersson 2007).

Tornebohmite-(Ce) was originally described from the Nya Bastnis field by Geijer (1921¢), and
although relatively rare in megascopically visible amounts, it is a characteristic constituent of the min-
eralisation, forming inconspicuous, small green rounded grains, often as aggregates in a fine-grained
cerite-bastnisite-ferriallanite groundmass. It is most typically directly associated with ferriallanite-(Ce)
(Holtstam & Andersson 2007).

Fluocerite was first described by Geijer (1921a), and more recent work has verified the presence of both
the Ce- and La-dominated species in the Nya Bastnis deposit (Holtstam & Andersson 2007). From its
textural appearance and paragenetic position, it seems to be an early-formed mineral, and characteristi-
cally displays some alteration (Geijer 1921a). This alteration, when complete, has led to the formation of
a porous mixture, chiefly made up of bastnisite-(La) and cerianite (Holtstam & Andersson 2007).

Late alteration by essentially oxidising fluids, in part along open fractures, led to the formation of
secondary minerals, commonly highlighted by the occurrence of bright green secondary copper min-
erals. This may also in part include the alteration of REE fluorocarbonates, but more specifically the
precipitation of lanthanite-(Ce). This mineral was first described as “kolsyrad ceroxidul” by Berzelius
(1825a, b). Its physical properties were later described by Hisinger (1826) and the name lanthanite was
given by Haidinger (1845). However, for some reason, the official type locality of lanthanite-(Ce) is
now given as the Britannia mine, near Snowdon in Wales (Bevins et al. 1985). The composition of
Bastnis lanthanite, having Ce>La, Nd, Pr, Sm, was verified by means of SEM-EDS analyses by Holt-
stam & Andersson (2007). Besides the occurrence of beautiful euhedral, pale pink transparent to
translucent lanthanite-(Ce) crystals on partly open cracks in cerite-ferriallanite rich assemblages, it is
also found in cavities and cracks in ferriallanite-bearing actinolite skarn (Ohman et al. 2004).

Cerianite-(Ce), a rare alteration product of fluocerite, occurs as microscopic grains less than 20 pm
in size, in the Nya Bastnis deposit (Holtstam & Andersson 2007). Haleniusite-(La) is isostructural
with cerianite, and also belongs to this late stage of modification of the REE mineralisation, occurring
as conspicuously yellow and dull fine-grained masses, often accompanied by secondary copper miner-
als (Fig. 52). It is suggested that it formed through the alteration of primary La-dominant bastnisite,
most likely by means of a decarbonation reaction (Holtstam et al. 2004). Overall, héleniusite is not
uncommon in visibly and more extensively altered cerite-bastnisite-rich assemblages.

Of the gadolinite-group minerals, gadolinite-(Ce) is reported from a single sample from Nya Bastnis
in which it occurs as anhedral grains up to 0.8 mm in size associated with tornebohmite-Ce),
ferriallanite-Ce), cerite-(Ce) and the Fe analogue of vistmanlandite-(Ce) (Holtstam & Andersson 2007).

Percleveite-(Ce) is a sorosilicate that occurs in association with cerite-(Ce), bastnisite-(Ce) and quartz
in the Nya Bastnis deposit. It was first described by Holtstam et al. (2003a) and this mineral must be
regarded as rather rare, since it is so far only known from only a few specimens. The host mineral assemblage
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Figure 52. Coarse bastnasite-(Ce)
occurring as a radial crystal
aggregate has been extensively
replaced by dullish, light yellow
haleniusite-(La), and also covered
by precipitates of a green
secondary copper mineral,
probably brochantite. Platy black
crystals of ferriallanite-(Ce)
border and are partly intergrown
with the (former) bastnasite in
the upper part of the image. Nya
Bastnas mines. Specimen from
the collection of the Swedish
Museum of Natural History
(Stockholm). Image width
approximately 2.5 cm. Photo: Erik
Jonsson.

consists of rich “cerite ore” with minor magnetite, chalcopyrite and clinoamphibole (tremolite-actinolite
intermediate sensu stricto). Accessory phases are allanite-(Ce), bastnisite-(Ce) and térnebohmite-(Ce).
Percleveite-(Ce) is the first pure lanthanide silicate with major Ce and La. The percleveite obviously
formed under (local) conditions featuring slightly higher silicon activity and lower concentrations of
Ca and Mg than those favourable for the crystallisation of cerite-(Ce) (Holtstam et al. 2003a).

Although fluorbritholite minerals are a characteristic of the Bastnis-type deposits in the Norberg
area, they have been identified as a likely main component of the REE mineralisation observed in the
Stalklockan skarn (see below).

A mineral corresponding to magnesiorowlandite-(Y) was reported by Jonsson & Hogdahl (2013)
from Hogfors. Additionally, the otherwise widespread REE phosphate monazite-(Ce) has been noted
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as a rare constituent of a banded magnetite-actinolite skarn associated with allanite-(Ce) from Bastnis
(Holtstam & Andersson 2007), and with other REE minerals in the banded iron formation at Hogfors
(Jonsson & Hogdahl 2013).

A rare, tungsten-bearing mineral originally reported by Holtstam & Andersson (2007) has very
recently been described as the new mineral delhuyarite-(Ce), occurring in association with e.g.
percleveite-(Ce), cerite-(Ce), bastnisite-(Ce), ferriallanite-(Ce), magnetite, and clinoamphibole (Holt-
stam et al. 2017a). Another new mineral named ferriperbeeite-(Ce), whose type locality has been
stated as “Bastnids mines” was also described recently (Bindi et al. 2017).

Skarpbergsgruvan/Ofra Bastnas

The Skarpbergsgruvan mine, or Ofra Bastnis (“Upper Bastnis”) is situated 100 m northeast of the Cerite
mine (Fig. 50) and was reported to carry a hematite ore with disseminated sphalerite and pyrite
(Tidestrdm 1890, unpublished manuscript). An analysis of the iron ore by A. Tamm in 1874 mentions
the presence of cerium oxide (as referred to by Tidestrom 1890). The suggestion of sphalerite seems ques-
tionable, and is also refuted by Geijer (1923), who believed this to be erroneous, either due to a mix-up of
samples/labels, or misidentification of the brownish garnet occurring in this ore. But he did consider it
to be fairly rich in barite, which might explain some of the problems encountered during beneficiation.

The Storgruvan mines (Bastnas Storgruva)

Mining at Storgruvan (Bastnis Storgruva), some 800 m northeast of Nya Bastnis (Fig. 50) in the
early 1900s exposed another REE mineralisation, comprising cerite associated with “allanite” and
tornebohmite, of which approximately 5 tonnes of REE-mineralised material was separated and sold
(e.g. Geijer 1923, 1961).

At Storgruvan, magnetite ore mixed with Mg-silicates (antophyllite, talc, biotite and cordierite)
occurs. The abundant amphibole is often found as conspicuous, radiating crystal aggregates, up to
2 cm in size, and as more coarse-grained crystals dispersed in the ore (Killfallet ore type). Locally,
antophyllite has been partly altered to talc. This ore type is typically banded with silicates separated
from magnetite bands (Geijer 1923). The rock surrounding the ore may be described as a cordierite-
antophyllite quartzite. Minor amounts of hematite, in the form of a banded iron formation asso-
ciated with actinolite-bearing “quartzite” are also found here. However, a notable feature here is a
body of “ophicalcitic” carbonate rock, as well as carbonates partly replaced by a tremolite-(chlorite)
skarn with magnetite ore (Geijer 1961) (here, “ophicalcite” is a term denoting an often fine- to
medium-grained carbonate rock, frequently dolomitic or calcitic, carrying abundant serpentine
mineral pseudomorphs after olivine or humite-group minerals). Associated with this skarn is mag-
netite, traces of chalcopyrite and, to be noted, REE mineralisation. Apparently, the whole quantity
of cerite-dominated REE-rich ore found here was separated and sent to the concentrating plant at
Hultebo, so it is now seemingly impossible to find any remnants of REE-mineralised material at
this locality. Geijer (1923) mentions “finger-thick” bands of heavily altered cerite occurring in asso-
ciation with térnebohmite, allanite (“orthite”), actinolite, magnetite and chalcopyrite. This REE
mineralisation probably stems from the Storgruvan #4 claim. Analyses of magnetite-skarn samples
from the dump, taken during the present project, yielded significant total REE contents of between
2000 and 10 000 ppm. Optical microscopy revealed this to be a pyrite-rich magnetite ore, in which
the magnetite occurs as disseminations and as aggregates. Local concentrations of pyrite occur as
well, and traces of hematite are seen within the magnetite. Coarse tremolite and anthophyllite make
up the groundmass to the ore. As a likely REE carrier, brown anhedral grains of an unspecified
allanite-like mineral up to 3 mm in size occur locally, and a colourless phase displaying marked
relief occurs in association with this. This could potentially be cerite, since this has been noted and
even extracted here (see above).
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The Stora Hogforsgruvan mine(s)

The Stora Hogforsgruvan mine is located further to the northeast (Fig. 50) and features a hematite-
dominated banded iron formation (BIF), with localised REE mineralisation (Hogbom 1930, Geijer
1961, Jonsson & Hogdahl 2013).

The mine dump material contains a well-banded, fine-grained hematite-quartz (meta-chert) ore,
ranging to a strongly foliated and lineated magnetite-(hematite?)-anthophyllite-tremolite ore
(Figs. 53, 54). No sulphides can be seen macroscopically. In polished thin section, hematite is seen as
disseminations forming diffuse to semi-compact folded bands. A few small magnetite grains and
hematite-altered magnetite grains are also visible. This is clearly a BIF-type ore, where locally
tremolitic skarn together with quartz forms the groundmass to a semi-compact hematite ore.

Figure 53. Hematite-metachert-
dominated banded iron ore (BIF)
exhibiting chevron-style folding;
dump sample at Stora Hogfors-
gruvan (6636536/534256). Photo:
Erik Jonsson.

Figure 54. Amphibole skarn-
bearing magnetite-hematite
banded iron ore from Stora
Hogforsgruvan (6636536/534256).
Photo: Torbjorn Bergman.
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REE mineralisation in turn occurs as sparse bands dominated by cerite-(Ce), the presumed Fe analogue
of vistmanlandite-(Ce), ferriallanite-(Ce) and gadolinite-(Ce), as well as additional minor minerals,
which appear as fine-grained, recrystallised assemblages in folded bands or layers within the banded
iron ore. These are locally cross-cut by later quartz veins carrying allanite-(Ce) (Jonsson & Hogdahl
2013; Figs. 48, 49). In particular, the systematic appearance of a pale green tremolitic amphibole in
association with REE enrichment in the banded iron ore suggests a link to the skarn-forming pro-
cesses responsible for the main REE mineralisation at Nya Bastnis.

Analyses of BIF samples from the dump, taken during the present project, showed total REE contents
of between 1100 to 8500 ppm. In these samples, 0.10—0.15-mm-large grains of an unspecified allanite-
like mineral are locally found together with tremolite, and possibly also tornebohmite or a gadolinite-
like mineral in the form of an olive-green phase. An allanite-like mineral also occurs in close associa-
tion with hematite bands, as intergrowths and larger inclusions. The concentrations of allanite occur
as 0.5 to 1 mm veinlets that may be several millimetres long.

Besides the major occurrences, REE mineralisation has also been observed at Lerklockan, Stdl-
klockan, Myrbacksfiltet and several other localities in the Riddarhyttan area (Fig. 50). The occur-
rences where we have factual data on REE enrichment are described below, but a significant number
of deposits/old mines are also known to carry disseminated allanites (sensu laro) or REE-bearing epidotes,
in particular. This has been noted in the Hans Urbansson field, Persgruvan and other mines in the
area (Geijer 1921b, 1923). In several of these occurrences, intermediate mixtures (not characterised
using modern methods) between allanites and epidotes, previously referred to as “epidotortite”, are
widespread (cf. Geijer 1921b, 1923); no modern analyses have been performed on these occurrences or
their minerals. The occurrence of allanite and REE-enriched epidotes is most likely also the main
reason for the locally relatively high REE content found in several other iron oxide deposits in the area
(see below).

Additional REE-mineralised zones at depth in the greater Bastnis area were noted during explor-
atory drilling for gold and base metals from an exploratory underground drift driven northwards from
the Bickegruvan mine (Fig. 50). This prospecting campaign was run in 1982, and started at the 360 m
level at Bickegruvan, and ended within the Nya Bastnis ore field; in total, eight cores were drilled here
(Halenius, 1987, unpublished report; Ihre & Sidbom, 1986, unpublished report). According to Ham-
mergren (1988, unpublished report) and others, content of up to 8 wt% Ce and 5 wt% La were found
in these cores. Analytical results of diamond drilling yielding anomalous REE contents (1-2% La,
2-4% Ce), were also recorded in the area between Lerklockan and Langgruvan; noteworthy elevated
concentrations of La and Ce were also found during drilling east of Bjursjon (Fig. 50).

The Stalklockan mines

REE mineralisation at Stalklockan, north-northwest of the Bastnis field (Fig. 50), was discovered in
mine dump material during this project. A sampled compact amphibole skarn assemblage in contact
with “ophicalcite” yielded significant REE enrichment as shown by XREF: (CeO, 19%, La,05 10%,
Nd, 05 8% PrO;; 2%, Sm,05 1.4% Y,0; 0.9%). This material was subsequently characterised using a
combination of optical microscopy, powder X-ray diffraction (XRD) and scanning electron microscopy
with energy dispersive X-ray spectroscopy (EDS). As seen from optical microscopy, a network of a
typical pleocroic (brown—green) allanite phase showing recrystallisation features and subgrain-formation
coexists with a colourless heavily fractured epidote (dollaseite-like) mineral. Based on interpretations of
the bulk sample XRD data, the fine-grained REE-rich assemblage predominantly comprises two min-
erals (disregarding ordinary skarn minerals), one related to the minerals of the epidote supergroup,
i.e. allanite sensu lato, and one with an apatite-type structure. Scanning electron microscope study with
EDS analyses yielded an empirical formula for the suggested apatite-structure phase, which is well
comparable to fluorbritholite-(Ce); approximately (Ce,La,Nd,Y,Ca)s(SiO 9); 5F . The epidote supergroup
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mineral is close in composition to an Fe-bearing dollaseite-(Ce), yet lacks fluorine, according to the
analyses performed (Fig. 55). A dollaseite mineral is also probably an abundant phase, based on the
XRD analyses. A related mineral, the proposed iron analogue of vistmanlandite-(Ce), makes up the
rest of the main REE silicate assemblage (Figs. 55, 56). Here too, alack of reliable fluorine data hampered
the chemical analyses, but the remaining element content and the resulting stoichiometries apparently
suffice to identify the mineral as to its group. Associated minerals, besides abundant skarn silicates
(primarily a clinoamphibole) and disseminated iron oxides (mainly magnetite), comprise fluorite, cop-
per sulphides, anhedral grains of a partly molybdenum-substituted scheelite (“molybdoscheelite”) and
rare small grains of native bismuth. The magnetite locally carries exsolution lamellae of ilmenite.

Figure 55. Back-scattered electron
(BSE) image of the REE-rich
mineralisation from Stalklockan:
REE silicates predominate, mainly
featuring white fluorbritholite-
(Ce) (Fbt), minor medium grey
vastmanlandite-like mineral
(Vas), and similarly medium grey
dollaseite-like mineral (Dst),
associated with copper sulphides
(Cu-S) in skarn silicates (black; Sil),
predominantly made up of
amphibole. Photo: Erik Jonsson.

Figure 56. Back-scattered electron
(BSE) image of the REE-rich
mineralisation from Stalklockan,
showing the predominant
intergrowth of a BSE-white
fluorbritholite-(Ce) (Fbt) with a
vastmanlandite-like mineral (Vas;
medium grey), together with
skarn amphibole (Amph; black).
The fine-grained and recrystal-
lised texture of the REE silicates is
apparent. Photo: Erik Jonsson.
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Lerklockan
The REE mineralisation at Lerklockan (Fig. 50) was described by Geijer (1961), as a railway cutting in

an “ore quartzite carrying a network of orthite veinlets”, with associated térnebohmite. A recent study
of what is likely to be the cutting referred to by Geijer failed to locate visible REE mineralisation.
Notably, the feature of allanite in later veinlets bears some similarity to the occurrence of later quartz
veins (in that case, cross-cutting the “Bastnis-type” mineralisation) with allanite-(Ce) at Hogfors

(Jonsson & Hogdahl 2013).

REE enrichment in other iron oxide mineralisations in the (greater) Riddarhyttan
district

During the course of this project, a suite of other iron mines in the Riddarhyttan district was sampled
for whole-rock geochemical analyses, to test for “invisible” REE enrichment, and thus to potentially
increase the area of known REE mineralisation. Some mines, like Storgruvan and Hégfors, are also
described above, and were sampled to assess whether seemingly ordinary ore and skarn assemblages would
also exhibit markedly increased REE content. The sampled localities, here reported from south to north,
that exhibit anomalous (>300) to high (>1000ppm) REE content are described below (Figs. 50, 58).

The Kanntalsgruvan mine

The Kanntal mine, or Kanntalsgruvan, is located in the Hans Urbansson mine field, southwest of the
Bastnis mines (Fig. 50), and is known for its locally rich cobalt mineralisation (e.g. Geijer 1923).
A mine dump sample consisting of quartz-magnetite ore with chalcopyrite dissemination was taken
and analysed in the present project and yielded a total REE content of 4800 ppm. The host rock is a
fine-grained, felsic metavolcanic type, probably of rhyolitic composition. In thin section, semi-compact
magnetite as anhedral to subhedral grains predominates, being euhedral towards chalcopyrite. The
copper sulphide forms large grains intergrown with anhedral pyrite, which also occurs as small
euhedral cubes. An accessory but important phase here is molybdenite, linking the sulphide inven-
tory to the Bastnis deposits. Magnetite displays even grain-boundaries and is relatively coarse-grained
(0.2-0.3 mm). Pyrite is common along the grain boundaries between magnetite and silicates; the
latter consist of greenish biotite, quartz, green chlorite oriented parallel to the foliation of the host rock.
Minor calcite occurs as small pods scattered in the groundmass of the rock. As a potential REE car-
rier, an unspecified allanite-like mineral is relatively common, displaying brown to weakly green
pleochroism. There is also an unknown colourless to weakly brown mineral with high relief in quartz.
Parallel deformation zones transect the oxide matrix in broad bands.

Ostergruvan/Mellangruvan mines

A sample from a dump between the mines Ostergruvan and Mellangruvan in the Myrbacksfiltet mine
field, southwest of the Bastnis area (Fig. 50), was taken and chemically analysed in the present project.
It consists of rusty quartz-rich magnetite ore and contains 1700 ppm of total REEs.

Gamla Bastnis

(Samples with thin sections and analyses, in profiles in the Gamla Bastnis area, by M. Ripa; cf. chapter 7).

Bedrock mapping along a profile west of the Gamla Bastnis ore field showed primarily metavolca-
nic siltstone. Microscopy of a thin section of this rock (sample CMR150054B, 6633973/ 532735)
exhibits the presence of allanite and fluorite within a muscovite-biotite quartzite. Magnetite and traces
of molybdenite also occur. It is notable that the allanite found here occurs in a rock seemingly devoid
of skarn, and poor in iron oxides or sulphides.

A profile south of the Gamla Bastnis ore field (sample and section CMR150055A, 6633789/ 532691)
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showed a volcanic siltstone in the western part, which is hematite-banded or hematite-spotted to the
east. This sample was collected from a horizon that constitutes a weakly garnet-bearing banded iron
formation. Hematite forms anhedral platy crystals in diffuse bands. The garnet is poikilitic with
inclusions of hematite and quartz. The rich concentration of bluish-green tourmaline, showing zona-
tion in bands, is noteworthy. Epidote occurs as pods, disseminations and bands. Biotite and chlorite
are also found in this rock type. Minor amounts of a probable but unspecified allanite mineral have
also been noted in this material.

The Sjogruvan mine

At the Sjogruvan mine, 2.5 km southwest of Nya Bastnis (Figs. 50, 57a), a typical magnesium-rich skarn
ore occurs, predominantly comprising anthophyllite and magnetite (Fig. 57b) and probably also talc.
Mine dump samples were chemically analysed in the present project, and yielded a total REE contents

Figure 57. A. Overview of the mine
dumps at Sjogruvan (6633505/
530388). B. Massive magnetite ore
with radial sprays of anthophyl-
lite. Photos: Torbjorn Bergman.
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of between 600 and 3200 ppm. No sulphides were observed. Locally semi-compact to compact
magnetite forms anhedral to locally subhedral, 0.1-0.2-mm-large grains. Coarse, radial sprays of antho-
phyllite occur locally in a zone cutting the ore (Fig. 57b). Along contacts the magnetite exhibits subgrain
formation and crack-fillings. Anthophyllite partly forms a parallel orientation. Talc and muscovite are
probably present here as well. Anhedral, 0.1-0.2 mm large grains with brown to green pleochroism,
forms overgrowths on the amphibole, and at the contact between amphibole and magnetite. This
pleochroic phase is probably an unspecified allanite mineral or REE-enriched epidote, forming dis-
seminations as well as local concentrations featuring aggregates up to 3 x 3 mm in size.

Karrbo mine (Svavelgruvan)

The Kirrbo mine (Kdrrbo gruva or Svavelgruvan), lies north of the main Riddarhyttan area, some
2.5km northeast of the Stora Hogfors mine (Fig. 58). It does not appear to be an iron oxide skarn
deposit, but is included here because of its location and REE content. It is represented by a rather large
water-filled mine opening (Fig. 59), with associated strongly rusted dump material, mainly consisting
of compact pyrrhotite and minor pyrite and chalcopyrite. Pyrrhotite also forms disseminations within
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Figure 58. Simplified bedrock geology map showing the locations of mines in the area northeast of Bastnas, Riddar-
hyttan area, in the central part of the REE line, highlighting those with REE enrichment.
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the country rock. The sample investigated consists of compact iron sulphides with a 2 x 1-cm-large
silicate inclusion. Pyrrhotite is the predominant sulphide, whereas pyrite and chalcopyrite form fairly
large intergrowths. Locally, magnetite also occurs, in the form of subhedral crystals. The pyrrhotite
shows modest alteration, especially along grain-boundaries. Large subhedral partly cracked pyrite
crystals are apparent in the material. Goethite-veining occurs, transecting both sulphides and silicates.
The latter consists of coarse tremolitic amphibole, with epidote and titanite as inclusions. A few grains
of an unspecified allanite-like mineral have also been noted. Samples from this location were chemi-
cally analysed under the present project, and yielded total REE content of between 1700 and 3700 ppm.

Godkarra

During a drilling campaign, probably in the 1980s by SGAB, sample BBAC 525 from Godkirra
northeast of the Bastnis area (Fig. 58) was found to consist of a clinoamphibole skarn assemblage
carrying chalcopyrite, pyrrhotite, bismuthinite, tellurobismuthite, native bismuth and gold, and fea-
turing an anomalous REE content (Hélenius 1987, unpublished report).

Vastra Langgruvan mine

The Vistra Langgruvan mine is in turn located northeast of Godkirra (Fig. 58) Chemical analyses of
dump samples from this mine yielded total REE contents of between 200 and 9500 ppm. These
samples consist of actinolite-dominated magnetite skarn with relatively rich sulphide disseminations,
mainly consisting of pyrite but also minor sphalerite. Polarised light microscopy revealed aggregates
and disseminations of magnetite, locally as more compact ore, and large anhedral pyrite grains, trac-
es of chalcopyrite, and later-formed goethite in fractures. The skarn groundmass consists of coarse,
colourless clinopyroxene (diopsidic) and tremoliticamphibole. An unspecified, locally twinned allanite-
like mineral (Fig. 60) occurs as up to 2 x 2-mm-large grains at the contact between diopside and
magnetite. The allanite also forms aggregates of anhedral grains (0.3 mm) with magnetite inclusions.

Figure 59. The Karrbo mine
(Svavelgruvan) with partly visible
mineralisation and associated
rusty alteration (6637826/536489).
Photo: Torbjorn Bergman.
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Figure 60. Brown-pleochroic,
allanite-like mineral as subhedral
to anhedral grains and aggrega-
tes in skarn from Stora Lang-
gruvan. Photomicrograph in
transmitted plane-polarised light.
The scale bar equals 100 micro-
metres. Photo: Per Nysten.

The Nora district

Two “major” REE-enriched magnetite skarn occurrences are presently known from the Nora area: the

Rédbergsgruvorna and Ostra Gyttorp mines (Fig. 61). Several minor occurrences of unspecified allanites
as well as other REE minerals have been noted in the greater Nora area, in addition to the deposits of the
Bastnis-type mentioned here. It is not known at present whether those minor occurrences might be
related to the Bastnis-type deposits, as is suggested in the Riddarhyttan and Norberg areas.

The Rédbergsgruvorna mines

The Rédbergsgruvorna mines (Fig. 61) were worked on a partly sulphide-bearing skarn iron ore, pre-
dominated consisting of dense to coarse-grained magnetite intergrown with quartz, among other
things. Material collected at one of the dumps shows magnetite mineralisation locally rich in
chalcopyrite in pods, and pyrite set in a matrix of even-grained, massive dark, calcic clinoamphibole
(actinolite-edenite; Holtstam & Andersson 2007) skarn. The predominant REE assemblage at Rod-
bergsgruvorna consists of cerite-(Ce), allanite-Ce)-ferriallanite-(Ce), bastnisite-(Ce), and a vistman-
landite-like mineral, occurring as zoned veinlets in massive clinoamphibole skarn associated with
magnetite and minor sulphides (Holtstam & Andersson 2007; Sahlstrom 2014; Fig. 62.) The grain size
of this skarn varies from fine- to medium-grained. Polarised light microscopy of the sulphide-rich
assemblages shows bismuthinite and possible bismuth sulphosalts. Magnetite devoid of sulphide occurs
locally within actinolite, here somewhat lighter green in colour, and with centimetre(s)-thick veinlets
consisting of coarser, black ferriallanite-(Ce) and “Fe-vistmanlandite-(Ce)” as an outer rim surround-
ing finer-grained pink cerite-(Ce), often intermixed with bastnisite-(Ce) and ferriallanite-(Ce) (Holt-
stam & Andersson 2007). These REE-rich veins may reach 5-10 cm in length, as observed in dump
material. Locally, abundant white fluorite is also found here associated with magnetite, sulphides, and
chlorite as well as minor molybdenite. The geochemical signature of Fe, Cu, Bi, Mo, F, and REE in
the Rodbergsgruvorn skarn is markedly similar to that of the Nya Bastnis field.

The REE-mineralised assemblages were only identified in dump material long after mining had
ceased at Rodbergsgruvorna, so no information is available as to how, and specifically where, they
occurred in the mine(s).
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Figure 61. Simplified bedrock geology map showing locations of known REE mineralisations in the Nora area, in the
southwestern part of the REE line.

Figure 62. REE mineralisation at Rod-
bergsgruvorna: zoned veinlets of lighter,
slightly pinkish-red cerite-(Ce) rimmed
by black ferriallanite-(Ce), in a light green
amphibole skarn. Photo: Per Nysten.
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The Ostra Gyttorp mine

Although neither Geijer (1921c) nor Holtstam et al. (2014) classifies it among the Bastnis type depos-
its, the REE mineralisation at the Ostra Gyttorp mine (Fig. 61) certainly shows both spatial and
mineralogical/geological and geochemical relationships to those occurrences. REE mineralisation
occurs here in the form of fine-grained allanite-(Ce)-dominated lenses associated with magnetite ore
and modest amounts of skarn, hosted by felsic metavolcanic rocks (Sahlstrom et al. 2014, Sahlstrom
2014, Nordenstrom 1890).

The Ostra Gyttorp deposit is a quartz-bearing magnetite ore associated with hornblende, actinolite
and biotite. The surrounding metavolcanic host rock is variably altered into a mica-rich assemblage,
in particular associated with the iron oxide ore and the allanite pods. Those pods also carry micro-
scopic inclusions of additional REE minerals, including gadolinite-(Y)-hingganite-(Y) solid solution
(Sahlstrom 2014). The REE content has been estimated at 2% in the mica-schist adjacent to the ore
(Geijer & Magnusson 1944). The occurrence of molybdenite in the Ostra Gyttorp mineralisation is
also notable.

During mining in the late 1800s, approximately 100 tonnes of “allanite”-dominated rare earth ore
were separated and sold, in addition to the iron ore (Tegengren 1924).

The Norbergq district

The major occurrences of Bastnis-type REE mineralisation in the area in and around the town of
Norberg (Fig. 63) are the Ostanmossa (C)stanmossagruvan), Malmbkirra (Malmkdirragruvan), Johanna
(Johannagruvan), As (Asgruvan) and So6dra Hackspik (Sodra Hackspikgruvan) mines, all of which are
magnetite-dominated skarn iron ore deposits. Since they are somewhat more enriched in HREE ver-
sus LREE than the deposits in the centre and southwest of the REE line, the Norberg deposits are
classified as belonging to subtype 2 of the Bastnis-type deposits (cf. above; Holtstam & Andersson
2007, Holtstam et al. 2014).

Silicates are the main hosts of REE in all these deposits, typically with the allanite-related minerals
dollaseite-(Ce)—dissakisite-(Ce) as well as fluorbritholite-(Ce) as major phases. REE fluorocarbonates
seem to occur in smaller total amounts. In contrast to the extensively polymetallic, sulphide-rich
nature of the Nya Bastnis mines in particular, featuring Bi, Co, Au, Mo etc., the REE-enriched mine-
ralisations in the Norberg area are characteristically poor in those metals.

The relative abundance of fluorine in the Norberg area deposits is manifested by the common occur-
rence of humite-group minerals, including the eponymous norbergite [Mg;(SiO4)(F,OH),]. These
minerals occur intimately with REE mineralisation, as at the type locality for norbergite, the Ostan-
mossa mine (Geijer 1927, 1936), and at the Johanna mine. The (former) presence of humite-group
minerals is also indicated by the common occurrence in these deposits of “ophicalcite” an evenly
fine-grained, often dolomitic carbonate rock containing pseudomorphs of humite-minerals, now
mainly consisting of (dark) serpentine (sezsu lato). A new mineral recently discovered in the Bastnis-
type deposits is gadolinite-(Nd) (Holtstam & Andersson 2007; Skoda et al. 2016, 2018), occurring
mainly in the Norberg area (Malmkirra and Johanna mines), but also noted at Bastnis. The optical
appearance of the greenish gadolinite-(Nd) may have led to it being misidentified as térnebohmite-(Ce)
in earlier studies.

Major REE minerals in the Norberg area

Dissakisite-(Ce) and dollaseite-(Ce) also belong to the allanite group (of the epidote supergroup) of
minerals, and form a solid solution involving OH-F substitution. Exchange vectors involving Mg-Fe
towards allanite sensu stricto also exist (Holtstam & Andersson 2007). Dollaseite-(Ce) is a major REE
carrier in the Norberg area (cf. Johanna and Ostanmossa mines, below), and was originally described
from Ostanmossa under the name “magnesium orthite” by Geijer (1927), and much later renamed
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Figure 63. Simplified bedrock geology map showing locations of mines in the Norberg area, northeastern part of the REE
line, highlighting those with known REE mineralisation.

“dollaseite” by Peacor & Dunn (1988). Typically, dollaseite (-dissakisite) occurs as relatively fine- to
medium-grained masses, lumps and bands or schlieren, which may also be visibly deformed and
folded (e.g. at Johanna; Fig 64), but it may also occur locally as radiating fans of twinned, elongated
crystals, as well as stouter, larger, sometimes subhedral to euhedral crystals (to nearly 1 cm; e.g. at
Ostanmossa). The texture of the finer-grained bands and masses of dollaseite is typically recrystallised,
presumably as a result of (Svecokarelian) regional metamorphism, as also indicated by the folding
observed of the carbonate-Mg skarn-hosted bands or schlieren. Zoned dollaseite-dissakisite crystals
occur at Ostanmossa, while a mineral with a composition similar to dissakisite-(Ce) was also reported
from the Sodra Hackspiksgruvan mine, where it occurred as aggregates up to 4 mm in a rock composed
of fluorite and fluorine-bearing phlogopite; accessory phases are magnetite and molybdenite (Holtstam
& Andersson 2007).
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Figure 64. Hand specimen image
of a sawn and lightly polished
slab showing deformed, partly
folded and recrystallised bands of
fine-grained REE silicate - fluoro-
carbonate mineralisation,
dominated by dollaseite-(Ce), in a
palest green amphibole-riddled
(skarn-altered) dolomitic marble.
Heavy black lines in the scale bar
in the upper right part of the
image are cm markings; fine lines
represent millimetres. Johanna

% mine (6658660/550883), Norberg
ﬁ area. Photo: Per Nysten.

Fluorbritholite-(Ce) is locally important, particularly at Malmkirra, where it has been found in
lumps weighing several kilograms, intimately associated with vistmanlandite-(Ce), dollaseite-(Ce),
gadolinite minerals, amphibole, dolomite, phlogopite, magnetite and pyrite (Holtstam & Andersson
2007). It has also been identified from the Sodra Hackspik and Ostanmossa mines; interestingly,
fluorbritholite-(Y) has also been found in one sample from the latter deposit, where it occurs in a later
skarn-dolomite vein cross-cutting a dollaseite-bearing amphibole skarn (Holtstam & Andersson 2007).

Gadolinite-group minerals are found in the Malmkirra, Johanna and Ostanmossa mines. At the
first-mentioned locality it may occur as fine-grained masses within an assemblage of fluorbritholite-
(Ce), vistmanlandite-(Ce) and dollaseite-(Ce), whereas in a tremolite-magnetite skarn carrying
dissakisite-(Ce) and fluorbritholite-(Ce), gadolinite-(Nd) occurs as inclusions within dissakisite (Holt-
stam & Andersson 2007). The new mineral gadolinite-(Nd) has so far been identified in material from
the Malmkirra and Johanna mines (Skoda et al. 2016, 2018; Holtstam & Andersson 2007). Gadolin-
ite-(Y) is also found at the Ostanmossa, Malmkirra and Johanna mines, often occurring as chemi-
cally zoned crystals with variable proportions of the predominant rare earth elements, Ce, Nd or Y (cf.
Holtstam & Andersson 2007). It seems likely that the early observations of abundant térnebohmite
at the Malmkirra mine (by Geijer 1936, which were not verified later (cf. Holtstam & Andersson 2007),
might be due to a misidentification of what was in fact gadolinite-(Nd), which also exhibits a greenish
colour in transmitted light.

Vistmanlandite-(Ce) is found mainly in the Norberg area (subtype 2 of Holtstam & Andersson
2007), in which it occurs most abundantly at the type locality — the Malmkirra mine (Holtstam et
al. 2005) —where it (at least locally) is one of the major REE hosts in the skarn. Here, the vistman-
landite occurs as small, mostly anhedral grains associated with dollaseite-(Ce), fluorbritholite-(Ce),
tremolite, dolomite and magnetite (Holtstam et al. 2005, Holtstam & Andersson 2007). Texturally,
the relationships between fluorbritholite and vistmanlandite seem to mimic the characteristic relation-
ships between cerite and ferriallanite in Bastnis, where the latter minerals rim and seem to replace the
former (e.g. Holtstam & Andersson 2007). Vistmanlandite-(Ce) could potentially also occur in the
Knutsbo area, while its purported, fluorine-free iron analogue (as yet not fully characterised and hence
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unnamed) seems confined to localities of subtype 1 (see above; Holtstam & Andersson 2007, Jonsson
& Hogdahl 2013).

Cerite-(Ce) occurs only sparsely in the Norberg area, and it is likely that a number of early observa-
tions of “cerite” in these localities (e.g. Geijer 1927) were in fact of fluorbritholite-(Ce), hand specimens
of which look rather similar. At the Johanna mine, cerite-(Ce) occurs in a texture similar to Nya
Bastnis, but with the cerite-(Ce) rimmed by mainly dollaseite-(Ce). Here, the cerite can also occur
intergrown with bastnisite-(La) (Holtstam & Andersson 2007).

In contrast to the deposits of subtype 1, and specifically the Nya Bastnis field, bastnisite-(Ce)
(or —(La)) occurs only sparsely in the subtype 2 deposits of the Norberg area, except in the Sodra Hack-
spik mine, where larger aggregates (up to approximately 2 cm) were found (Holtstam & Andersson 2007).

Magnesiorowlandite-(Y) was reported by Holtstam et al. (2007, 2014) from the Malmkirra mine.

The calcium-bearing REE fluorocarbonate parisite-(Ce) occurs together with a similar mineral with
lower Ca and F content in the Ostanmossa mine, where it partly replaces an yttrium-dominant fluor-
britholite mineral, and is also disseminated in a magnetite-REE silicate-bearing carbonate aggregate
(Holtstam & Andersson 2007). Térnebohmite-(Ce) was reported by Geijer (1936) to have occurred
in significant amounts at the now inaccessible Sodra Hackspik mine.

A chlorine-bearing REE silicate occurs at Malmkirra (Holtstam & Andersson 2007), and was
recently described as the new mineral ulfanderssonite-(Ce) (Holtstam et al. 2017b). It occurs as rela-
tively rich, fine-grained, granular aggregates associated with, among others, vistmanlandite-(Ce),
bastnisite-(Ce), phlogopite and talc in the (type locality) Malmkirra mine dump material, but has
also been identified previously in much smaller amounts in samples from Nya Bastnis, in the central
part of the REE line (Sahlstrom 2014, Holtstam et al. 2017b, R. Skoda, personal communication).

Malmkarra

The Malmkirra mines (Fig. 63) operated on magnetite skarn deposits occurring within a narrow
layer of dolomitic marble, conformable with the surrounding metavolcanic rocks. The latter vary from
moderately altered (in the west), to strongly altered to a cordierite-bearing schist in a zone next to the
skarn-ore bodies (to the east). Local faulting has separated the ore into separate bodies. Between 1874
and 1936 a total of 145,000 tonnes of iron ore was mined at Malmkirra (Geijer & Magnusson 1944).

REE mineralisation, mainly in the form of fluorbritholite-(Ce), vistmanlandite-(Ce) as well as REE
fluorocarbonates and gadolinites (Holtstam & Andersson 2007, Andersson 2004), occurs in a skarn
unit consisting mainly of clinoamphibole and humite minerals, in that marble at the contact towards
cordierite schists. “Ophicalcite” with serpentine-altered chondrodite is common within the marble.
Local concentrations of uranium (<1 wt%), as measured by hand-held XRF, also occur. This U-mine-
ralisation is also associated with increased REE content (M. Leijd, personal communication). According
to Geijer (1927), a rich band of REE silicates was found at the 205 m level in the Lill-gruve ore body, in
a transitional zone from skarn ore to carbonate rock. Those REE silicates most likely correspond to the
rich material found in more recent times on the old mine dumps and consist of several intergrown REE
rich minerals, including fluorbritholite-(Ce) and vistmanlandite-(Ce) (Holtstam & Andersson 2007).

Korsstensgruvan and Aspgruvan

The two small magnetite-actinolite skarn mines Aspgruvan and Korsstensgruvan are situated in the
southwestern extension from the Malmkirra mines, between Fagersta and Norberg (Fig. 63). These
skarn ores are hosted by marble in contact with felsic metavolcanic rock, partly displaying a volcani-
clastic texture. The skarn consists mainly of actinolite and chondrodite (Geijer & Magnusson 1944).
Polarised light microscopy of samples from Korsstensgruvan shows a poor to semi-compact magnetite
ore in which magnetite forms aggregates cut by fractures. Magnetite also forms elongated grains, with
the central parts carrying many inclusions of silicates in a lamellar orientation. Tremolitic amphibole
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and diopsidic pyroxene have also been noted. Diffuse aggregates of an unspecified allanite-type
mineral occur at the contact between magnetite and amphibole. Additionally, such “allanite”, and to
some extent also epidote, occur disseminated, locally rather abundantly, in the silicate groundmass.
Chemical analyses of samples taken during the present project from the dumps at Korsstensgruvan
yield total REE contents of 1000—5000 ppm, and from Aspgruvan 3501600 ppm.

Johannagruvan

At the Johanna mine, situated near the southern outskirts of Norberg (Fig. 62), magnetite mineralisa-
tion in a dolomitic carbonate rock (marble) occurs associated with a pale greenish tremolitic skarn with
local “ophicalcite” pods (Geijer 1936), and associated REE mineralisation, predominantly in the form
of veins, bands or schlieren of dollaseite-(Ce) associated with sparse cerite-(Ce), REE carbonates and
gadolinite-group minerals (Fig. 64). The REE minerals are typically fine-grained, show textures sug-
gesting pervasive recrystallisation, and ductile deformation, including folding of the bands. Humite-
group minerals, probably norbergite, also occur as coarse, subhedral crystals included in the bands or
schlieren of REE silicates, predominantly comprising dollaseite-(Ce). In thin section the dollaseite is
seen as pinkish-brown to greenish anhedral aggregates in the form of coarse-grained pods in tremolite
skarn. Iron oxides are present as bands of platy hematite associated with large subhedral to euhedral
magnetite. Bands rich in euhedral magnetite alternate with bands rich in platy hematite. Hematite
with small remnants of magnetite suggests oxidation (martitisation).

The Ostanmossa mine

The Ostanmossa mine (Fig. 63) was worked on a magnetite-skarn mineralisation associated with car-
bonate rocks, similar to that at Asgruvan (below), but featuring significantly more abundant REE
mineralisation, mainly in the form of dollaseite-(dissakisite)-(Ce) and fluorbritholite-(Ce), character-
istically associated with norbergite. The largest concentration of REE silicates (mainly dollaseite-(Ce))
was found in the drift “Grodorten” at the 47 m level, where it occurred with tremolite and dolomite
in a zone up to 20 m wide (Geijer 1936). The skarn consists of garnet, diopside, actinolite, as well as
tremolite, which are associated with phlogopite and humite minerals. The carbonate rocks consist of
both a fine-grained dolomite and a more coarse-grained calcite marble. The former in particular exhibits
“ophicalcite” texture, with altered humite-mineral spots.

The maximum depth of the mine was 115 m and a total production of 78,000 tonnes of Fe metal
was obtained (Geijer & Magnusson 1944).

Asgruvan (the As mine)

Asgruvan (Fig. 63), is another marble-hosted magnetite skarn deposit, which in this case carries only
sparse known REE mineralisation, mainly as “magnesiumortit” (of Geijer 1936; presumably dollaseite).
As at Ostanmossa, the carbonates occur both as dolomite and calcite marble. Dollaseite-like minerals
were found at various places at the 130 m level in calcite marble and calcitic magnetite ore, in pods up to
20 cm in size. At one place the dollaseite-like mineral was associated with chondrodite, tremolite, and as
microscopic grains, possibly fluorbritholite (Geijer 1936). That author also notes another association, in
the form of an up to 15-cm-thick and 5-m-long, dark band, of probable dollaseite within calcite marble,
which was associated with magnetite, tremolite, serpentine (sezsu lato), and fluorite. Dollaseite-like
minerals were also found as disseminated small grains within the actinolite skarn ore (Geijer 1936).

The Sodra Hackspik mine
The S6dra Hackspik mine (Fig. 63) is (was) also a skarn iron ore, within the Smorberget field, with

magnetite associated with a very pale tremolite, fluorite, minor norbergite and REE minerals, described

by Geijer (1936). The locality later disappeared, most likely during building projects. Specimens found
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at the dumps in former times consisted of biotite/phlogopite, deep violet fluorite, and rich mineralisa-
tion of molybdenite associated with at least one ten-centimetre-sized pod of térnebohmite, as well as
relatively rich bastnisite-(Ce). Overall, the S6dra Hackspik mineralisation, with its fluorine-rich skarn
and locally REE-rich assemblages with cerite-(Ce), tornebohmite-(Ce), dissakisite-(Ce), dollaseite-(Ce),
bastnisite-(Ce and La), and fluorbritholite-(Ce) (Holtstam & Andersson 2007; Geijer, 1936), appears
to stand out significantly among the other occurrences in the Norberg area.

Additionally, local skarn assemblages of this type, chiefly bearing REE-enriched epidote, allanite
and/or dollaseite/dissakisite-like minerals have also been encountered at several other mines in the
Norberg area, such as Kallmorberg (e.g. Holmqvist 1975) and, as noted above, at the Stripasen copper
mines (Geijer 1936, 1961). As with the Riddarhyttan area, we find it likely that such minerals may also
have escaped observation in other mineralisations, not least due to their often fine-grained and gene-
rally unobtrusive nature, and because REE were not included in analyses routinely performed during
the mining and exploration heyday in these districts.

The Knutsbo district

The deposits in the neighbourhood of Knutsbo (Knutsbogruvorna, i.e. the Knutsbo mines) are likely
to represent the northeasternmost continuation of the REE line (cf. also Geijer & Magnusson 1944),
since they are REE-enriched, and predominantly (at least locally) consist of minerals similar to the
skarns of Bastnis type, while being located significantly further to the east, seemingly forming an
offset part of this belt (Fig. 46). However, the Knutsbo area mineralisations are primarily interpreted
to be hosted by mafic rocks (Fig. 65), which is in stark contrast to the ones of the REE line. Yet, obser-
vations in the mine dumps by Asklund (1946) and others indicate that the immediate host rock(s) at
Knutsbogruvorna may be variably altered (grading into mica schists, similar to the Riddarhyttan area)
felsic metavolcanic rocks.

The seemingly small iron mineralisations in the Knutsbo area were test-mined during the First World
War (1914-1918), but according to Geijer & Magnusson (1944), no data are available on the quantities
produced. Danielsgruvan and Haggruvan were noted for their REE content, with “magnesiumortit”
(dollaseite-(Ce)?) and tornebohmite, for example, having been described from a talc-bearing amphi-
bole skarn in the mine dumps (Geijer & Magnusson 1944, Asklund 1946, Geijer 1961). Recent sampling
in the Knutsbo area during the present project, and subsequent studies, confirmed the occurrence of
REE mineralisation at these localities. Major REE hosts here are dollaseite-allanite-like minerals.

It is notable that (unspecified) allanites have also been observed in several old (iron) mines to the
north of the Knutsbo area. Among these are the Sjégruvan mine, located near the shore of lake
Bisingen, and an iron mine near the Bisinge copper mine (e.g. Asklund 1946).

The Knutsbo mines

Three ore types were sampled from the mixed dumps at the Knutsbo mines proper, and of these,
a dark amphibole skarn proved to contain abundant subhedral dollaseite-allanite. In thin section
these are pale brown to colourless single crystals and aggregates of crystals locally showing twinning.
Pyrite, chalcopyrite and magnetite occur in this skarn. Also observed was a uniaxial, optically posi-
tive, colourless mineral. This is probably either cerite-(Ce) or fluorbritholite-(Ce).

The Gruvhagen mines

Two minor skarn iron ore deposits are located at Gruvhagen, immediately southwest of Knutsbo
(Fig. 65), and a porous/drusy calcite-bearing amphibole skarn was sampled here. This skarn is cut by
a coarse vein, several mm thick, consisting of intergrown magnetite and dollaseite-like/allanite group
mineral, together with minor amphibole. The REE silicates are brown to green pleochroic in thin sec-
tion, and in part form radial aggregates. No REE-bearing minerals were observed outside this vein.
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Figure 65. Simplified bedrock geology map showing locations of mines with REE mineralisation in the Knutsbo area,
northeasternmost part of the REE line.

The drusy parts of the skarn contain euhedral amphibole as well as calcite crystals up to 5 mm in size.
Local magnetite concentrations are found in association with calcite, although hematite is by far the
commonest oxide present. No sulphides have been observed.

Morkens # 4

This is a very small prospect for copper and to some extent also cobalt, within a tremolite-talc-quartz
skarn. Since this deposit is located within a shear zone, the nature of the host rocks is somewhat uncer-
tain. A granodioritic, in part strongly sheared rock, alternates with a fine-grained felsic meta-volcanic
component. Mafic plutonic rocks are also present further away from the deposit. In a tremolitic skarn
poor in oxides, a colourless to greyish-green, anhedral phase, possibly dollaseite or a similar allanite
group mineral, is the predominant REE host. It is biaxial negative with a large 2V and exhibits low
interference colours. It is locally intergrown with another dollaseite-like mineral, as well as minor
amounts of a strongly pleochroic phase (displaying green to dark brown colours), likely to be allanite
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Figure 66.Brown, allanite-like
mineral as subhedral crystals or
fissure-fillings in skarn at
Morkens #4, Knutsbo area.
Photomicrograph in transmitted
plane-polarised light. The scale
bar equals 100 micrometres.
Photo: Per Nysten.

(or possibly vistmanlandite). A network of REE minerals occurs in a more quartz-rich rock with dis-
seminated chalcopyrite and altered pyrrhotite. EDS analyses performed by Mattsson (2016) suggest
tornebohmite and vistmanlandite compositions. Cataclastic zones are also present as well as cross-
cutting veinlets with a wavy (folded?) appearance, filled by a dark brown allanite-like phase (Fig. 66).
Minor amounts of brown REE minerals are also dispersed in the host rock to these veins.

In a coarse-grained tremolitic skarn with relatively rich disseminations of chalcopyrite and minor
altered pyrrhotite, a colourless dollaseite-like mineral, forming partly twinned aggregates up to 5 mm
in size occurs. Locally, a brown-pleochroic REE mineral is seen as rims around the colourless mineral,
indicating overgrowth or replacement. This texture is clearly reminiscent of the characteristic relation-
ship between ferriallanite and cerite at Nya Bastnis. The latter mineral is also found forming crystals
devoid of the colourless mineral. Mattsson (2016) suggests that these represent dollaseite-(Ce) and a
vistmanlandite-like mineral. Both REE phases occur intimately intergrown with chalcopyrite.

The REE line — concluding remarks

Despite the modest (where at all known) volumes and high proportions of the LREE in individual
Bastnis-type deposits, their locally (very) high grades and extended regional distribution along the
100 km+ REE line suggest some relevant exploration potential, not least when considered together with
other potential ore metals (iron, cobalt, molybdenum, gold etc., which are in part typically associated
with these REE-rich skarns, best exemplified at Nya Bastnis). Several new observations of both “Bast-
nis-like” (type) REE mineralisation, and REE enrichment without the presence of characteristic skarn
assemblages, certainly point to a wider distribution of REE than earlier known or anticipated within
the REE line, not least in the greater Riddarhyttan area, and mineralisations south and north of it.
A potential problem for the beneficiation of these deposits is their mineralogical complexity. But in
most cases a few REE-rich silicate minerals (e.g., cerite-(Ce), dollaseite-(Ce), ferriallanite-(Ce), fluor-
britholite-(Ce)) tend to predominate in any individual deposit, a feature that might make it easier to
exploit them. In order to evaluate this, bulk sampling of megascopically visible REE-mineralised dump
material from two contrasting deposits in the REE line was also undertaken under the EURARE
project, at Nya Bastnis (Riddarhyttan), and Johannagruvan (Norberg), for beneficiation tests.

RARE EARTH ELEMENTS DISTRIBUTION, MINERALISATION AND EXPLORATION POTENTIAL IN SWEDEN R & M 146

93



94

REE mineralisation in other iron oxide deposits

We have only limited information on a number of iron oxide mineralisations showing enrichments in
the REEs, not least as to their genesis and relationship with other types of deposits. They range from
plainly unknown, via uranium-anomalous iron oxides and Bastnis-type related mineralisations, to
suspected apatite-iron oxide (Kiruna)-type deposits. The link between uranium enrichment and
increased REE content is notable in several mines and mining areas in the Bergslagen ore province;
we do not know much about the origin of these systems, however. Also, several additional localities
such as Klacka—Lerberg and others are known to be significantly enriched in uranium, but nothing is
currently known of their potential REE content, since this has not been studied previously, and was
not within the scope of the present project.

Recent and earlier studies have also highlighted significantly increased REE content in some of the
mined banded iron formations (BIFs), as well as other (non-apatite) iron ores in Bergslagen (Hogdahl et
al. 2015; Andersson 1972, unpublished report), and we find it likely that further investigation will yield
additional discoveries.

It is hoped that future studies may resolve issues of origin and REE mineralogy, and provide new
detailed information on some or all of the mineralisations described in this section.

REE-U-enrichment in the Skdrhyttefdltet iron mines, western Bergslagen

The Skirhyttefiltet iron mines (also named “Blankagruvorna”, or “Blankagruvan” Hammergren 1988,
unpublished report) near Blankafors, are located in western Bergslagen, 17 km west of Nora (Fig. 67;
Blankagruvan). These iron oxide ores occur within mica-rich felsic (Svecofennian) metavolcanic rocks
close to the contact of a K-feldspar porphyritic granite belonging to the Transscandinavian Igneous
Belt (TIB) (Wiklander & Lundstrém, 1991; Hogdahl et al. 2004).

Reviewing older analyses from the SGU uranium exploration period, Hammergren (1988, unpu-
blished report) reported 4564 ppm of yttrium (associated with high U and marked Th and Zr) in a
dump sample from “Blankagruvan”; another sample from nearby “Blankafall” reached 2808 ppm
yttrium, also associated with high uranium and marked enrichment in thorium.

Later analytical data of Gustafsson (1991, unpublished report) confirmed that mine dump material
consisting of magnetite and chlorite was enriched in Y, Mo, Th and Zr, and had high uranium content.
No data were given for the other REEs. The yttrium content was reported as 0.3—-0.5 wt%. More
recently, dump material has also been found to contain local concentrations of grossular-andradite-
actinolite skarn with accessory bismuthinite. It is not known at present whether such other skarn types
may have elevated REE contents.

REE-U-enrichment in the Timansberqg iron mines, southwestern Bergslagen

The Timansberg iron mines (Fig. 67) are located in southwestern Bergslagen, some 15 km northwest
of Nora. The ore mined there was a felsic metavolcanic-hosted, quartz-skarn magnetite ore, character-
istically exhibiting fracture network, breccia and other deformation textures (Swedish: “knottermalm’;
Geijer & Magnusson 1944); the main associated minerals are actinolitic amphiboles and biotite, as
well as quartz. Garnet and epidote generally occur more sparsely, while minor chlorite and talc have
been observed in biotite-rich lithologies (skd/ units). The latter typically occurred in the border zone
between ore and the variably altered host rocks (Geijer & Magnusson 1944).

Some samples for bulk geochemical analysis, performed during the national uranium exploration
programme in the 1970s, were also analysed for yttrium, and eight mine dump samples from Timans-
berg yielded between 1089 and 10105 (average 3433) ppm yttrium, and a uranium contents of between
100 and 28514 ppm (Hammergren 1988, unpublished report). Notably, no additional REEs were
seemingly analysed, not much details can be had from the available report.

Gustafsson (1990, unpublished report) noted that Timansberg is likely to be the most uranium-rich
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Figure 67. Simplified bedrock geology map showing locations of mines with REE mineralisation in the southwestern to
southernmost part of the Bergslagen ore province, including the southwesternmost part of the REE line, and the
Zinkgruvan mine for reference.

iron mine in Sweden, with uranium chiefly hosted by “pitchblende” uraninite in biotite-amphibole
skarn). The secondary uranium mineral uranophane had also been recorded from Timansberg by Lof-
vendahl (1981). Interestingly, Gustafsson also mentioned briefly that the Timansberg skarn is enriched
in beryllium (but without making any further reference to this). He also proposed more extensive
sampling and study of the poorly known mineralisations between Timansberg and Blankafors.
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The Sveafallen REE-(U-Th)-anomalous iron oxide mineralisation, southwest of
Bergslagen

The mineralisation at Sveafallen is located immediately west of Bergslagen proper, southwest of Karl-
skoga, and close to the northeastern part of lake Vinern (Fig. 67). It consists of two small iron mines
situated within a quartz monzonite to granite belonging to the c. 1.8 Ga Filipstad granite suite (Trans-
scandinavian Igneous Belt; TIB; cf. Hogdahl et al. 2004). Outcrops of an unaltered type of this rock
occur 100 m to the east of the mines, where it is weakly porphyritic, greyish-red to reddish-grey and
medium- to coarse-grained. At the actual mines, the granitic host rock appears to have been largely
replaced by relatively compact magnetite; the appearance of (remnant?) K-feldspar megacrysts in the
massive, fine-grained magnetite is conspicuous (Fig. 68). The water-filled mines are not accessible, but
extensive dump material exists close to them. In hand specimen, magnetite and microcline are the
predominant minerals.

The potential for REE mineralisation in the vicinity of Sveafallen was first highlighted by Ham-
mergren (1988, unpublished report), due to a significant thorium anomaly. The area was subsequently
visited by Gustafsson (1991, unpublished report), who sampled the old mine dumps (and noted that
the consistently high radioactivity was due to elevated thorium content in the iron ore). He also found
the iron oxide (magnetite) mineralisation to be anomalously high in REEs.

All material sampled during this project is weakly to moderately radioactive (0.1-0.3 mR/h), as
measured with a scintillation detector, and gamma spectrometry measurements show high Th and U
values (500-800 ppm).

Ore microscopy revealed that ilmenite occurs abundantly as exsolution lamellae in magnetite,
while hematite occurs as irregular patches within that magnetite. Sulphides occur as 0.2 mm inter-
growths of chalcopyrite and pyrite.

Scanning electron microscopy with EDS analysis shows that the main carrier of REE in this rather
exotic mineralisation is a thorium-(uranium)-bearing monazite-(Ce), occurring as abundant, (sub-)
rounded inclusions in the ilmenite-bearing massive magnetite ore, chiefly together with also widespread,
mostly anhedral zircon (Fig. 69). In some cases, monazite-(Ce) and zircon occur as intergrowths or

Figure 68. Hand specimen image
of a fine-grained magnetite ore
with abundant, subrounded
feldspar clasts or crystals. The
scale bar in the upper part of the
image is 2 cm wide. Sveafallen
(6563296/467479). Photo: Per
Nysten.
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composite grains in the magnetite (as can be seen in Fig. 69). As noted in the optical study, ilmenite is
abundant, occurring as crystallographically oriented sets of exsolution lamellae within the magnetite,
and shows modest manganese content (through pyrophanite solid solution). Subhedral, seemingly in
part corroded grains/crystals of a mineral close to cerianite-(Ce) also occurs, which contain a U-Th-
bearing monazite-(Ce), together with (a late-stage?) fluorapatite as minute grains or subhedral crystals.

The Sveafallen mineralisation does not correspond to any of the previously known types in the
region and is clearly of some fundamental interest.

REE enrichment in the Bojgruvan mine, southwestern Bergslagen

Bojgruvan (the Boj mine) is located in the southern part of the Guldsmedsboda mine field near
Svartd, southeast of Degerfors in the far southwest of Bergslagen (Fig. 67). The main hosts are felsic
metavolcanic rocks. Little data are currently available on the exact nature of the Boj mine, but iron
ores in this part of the Guldsmedsboda field consist of an intermix of magnetite and hematite; typi-
cally they are quartz and mica-rich, and carry lesser amounts of pyroxene, amphibole and epidote, and
accessory tourmaline, allanite, apatite sensu lato, and zircon (Geijer & Magnusson 1944). Veins and
dykes of pegmatite and aplite are common. According to Wikstrom & Karis (1997), the Kirrgruvan
mine in the Guldsmedsboda ore field about 1 km south of Bojgruvan consists of mica and quartz-
bearing skol ore with minor epidote-clinopyroxene skarn. It is uncertain whether this is identical to
Bojgruvan. This ore also contains remnants of cordierite-veined gneiss, as well as of the main host rock.

Within the present project, an iron ore sample from the Bojgruvan mine was subjected to bulk
geochemical analysis, which yielded 563 ppm total REE. On the basis of this, polished thin sections
were produced, and subjected to optical and scanning electron microscopy with energy-dispersive
spectrometric analysis, in order to characterise the REE host minerals in the ore, and their textures.
The sample material studied by scanning electron microscopy consists of fairly strongly foliated,
magnetite-phyllosilicate rock (“skdlmalm”), which carries anhedral to subhedral fluorapatite crystals,
as well as other minerals (Fig. 70). Magnetite tends to occur in bands. Like many apatite-iron oxide
deposits (see above, and Jonsson et al. 2016, and references therein), the apatites often carry variably-
sized inclusions of REE phosphates, in the case of Bojgruvan, chiefly monazite-(Ce). The monazites

Figure 69.Back-scattered electron
(BSE) image of magnetite
aggregates (medium grey; Mt)
with exsolution lamellae of
ilmenite (black, crystallographi-
cally oriented) and abundant,
subrounded inclusions of
monazite-(Ce) (white; Mz) and
zircon (light grey; Zr). Silicate mine-
rals are dark grey to black. The
scale bar equals 30 micrometres.
Sveafallen (6563296/467479).
Photo: Erik Jonsson.

RARE EARTH ELEMENTS DISTRIBUTION, MINERALISATION AND EXPLORATION POTENTIAL IN SWEDEN R & M 146 97



98

Figure 70. Back-scattered electron
(BSE) image showing a silicate-
bearing (darkest grey to black)
magnetite (lightest grey) ore,
with magnetite in partinter-
grown with blocky monazite-(Ce)
(white), fluorapatite (REE-free;
medium grey), locally hosting
fine-grained fracture fillings and
aggregates of REE-bearing
phases). The scale bar equals 10
micrometres. Bojgruvan
(6551501/473426). Photo: Erik
Jonsson.

may in some cases carry small but detectable quantities of thorium. The REE-deficient (or at least
below detection limits) fluorapatite, as well as monazite-(Ce) and the more sparsely occurring xenotime-
(Y) tend to occur mostly in the silicates, rather than with, or directly associated with, the magnetite.
Monazite may occur also as intergrowths, or intimately with magnetite, as can be seen in Fig. 70. Very
small inclusions of BSE-white phases occurring as a “dusting” in fluorapatite may indicate fluid-
mediated remobilisation of REE from the apatite into later-formed REE phosphates such as monazite
and xenotime (cf. Jonsson et al. 2016, and references therein). Sparse barite, and complexly zoned
zircons have also been observed. This REE mineralisation was discovered during the Eurare project.

REE enrichment in the U-anomalous Tybble iron mines, southernmost Bergslagen

The Tybble iron mines are located in the southernmost extension of the Bergslagen ore province
proper (Fig. 67), approximately 11 km east-southeast of the active Zinkgruvan sulphide mine. This area
features mostly relatively strongly metamorphosed and deformed Svecofennian metasupracrustal rocks,
including felsic metavolcanic rocks, paragneisses and minor marble, and abundant older and younger
granites, the latter belonging to the Transscandinavian Igneous Belt (TIB; Hogdahl et al. 2004). The
mines themselves occur within felsic metavolcanic rocks, near a marble interlayer, and the sequence is
cut by both dioritic and pegmatitic dykes (Geijer & Magnusson 1944).

The magnetite-dominated ore may locally exhibit a diffuse banding, and contains variable amounts
of quartz, apatite sensu lato, amphibole, micas, sulphides, tourmaline and allanite sensu lato; the latter
two minerals also occur in the cross-cutting granitic pegmatites (Geijer & Magnusson 1944, Wikstrom
& Karis 1991).

Hammergren (1988, unpublished report) mentioned the dumps at the Tybble iron mine(s) as being ano-
malously radioactive. Additionally, he noted that minor uranium mineralisations occur in the old “Black-
fardsfiltet” mining area, 5.5 km northwest of Tybble, at Ilamgruvan. East of that area, felsic metavolcanic
rocksalso exhibited marked radioactivity. Itwas suggested that this is related to an approximately 100-m-long,
north—south striking fracture zone. Anomalous radioactivity was also noted at Gruvmon, west of Godegard,
and associated with a “uranium-anomalous” gneissic metavolcanic rock with pegmatitic parts between the
lakes Skeppsjon and Bredsjon, some 6 km northwest of Tybble. It is not known whether all, or any, of
these uranium-anomalous areas are also associated with increased REE content.
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Figure 71. Back-scattered electron
(BSE) image showing a silicate-
bearing (darkest grey to black)
magnetite (lightest grey) ore,
with fluorapatite (REE-free;
medium grey), locally hosting
fine-grained fracture fillings and
aggregates of Ca-REE compounds
(white, e.g. in an atoll-type
texture in the left-central part of
the image), and minor allanite-
(Ce). The scale bar equals 100
micrometres. Tybble iron mines
(6517096/516016). Photo: Erik
Jonsson.

Gustafsson (1991, unpublished report) subsequently reported that the iron oxide-mineralised, anom-
alously radioactive mine dump at Tybble was sampled and yielded increased REE, but that it was “too
low to be of potential economic interest”. Under the Eurare project, one iron ore sample from Tybble
(SGUR10007) was subjected to bulk geochemical analysis, which yielded a very high 17 428 ppm total
REE. On the basis of this, a polished thin section was produced, and subjected to optical and scanning
electron microscopy with energy-dispersive spectrometric analysis (SEM-EDS), in order to character-
ise the REE host minerals in the ore. Based on this, rare earth element mineralisation at Tybble is
hosted mainlybyallanite-(Ce) to REE epidote, sparse monazite-(Ce), fine-grained REE fluorocarbonate(s),
and unidentified (heterogeneous) oxidic U-Pb-REE phases, all associated with magnetite, and often
REE-free (or at least below detection limits) fluorapatite (Fig. 71). IfREE mineralisation and increased
content of uranium and/or thorium are linked (as in the material studied from the Tybble mines), a
larger area may be of interest for further study, as suggested by Hammergren (1988, above).

REE enrichment in the Gullebo iron mines, southeasternmost Bergslagen

The Gullebo iron mines are located near the southeasternmost extreme of the Bergslagen ore province
proper (Fig. 72). Iron oxide mineralisation occurs here in the form of a quartz-biotite-bearing, fine-
grained magnetite ore in what has been interpreted to be a fragment of fine-grained, reddish felsic
metavolcanic rock, occurring as a mega-xenolith in a Filipstad-type TIB (Transscandinavian Igneous
Belt; Hogdahl et al. 2004) granite, which also cross-cuts both ore and the proposed metavolcanic rock
(Geijer & Magnusson 1944). According to the latter authors, the magnetite ore contained some feldspar,
epidote and titanite near the contacts to the cross-cutting dykes, and otherwise becomes sulphide-
bearing at depth. Brun etal. (1995) also mentions the occurrence of garnet, coarse-grained hornblende
and magnetite in associated amphibole skarn.

An iron ore sample from the Gullebo mines was subjected to bulk geochemical analysis, which yield-
ed 932 ppm total REE. On the basis of this, polished thin sections were produced, and subjected to
optical and scanning electron microscopy with energy-dispersive spectrometric (SEM-EDS) analysis, in
order to characterise the REE host minerals in the ore, and their textures (Fig. 73). The notable titanium
content observed was found to be hosted both by the magnetite and as separate minerals, chiefly ilmenite
(in part showing Mn content, i.e. with a pyrophanite-type substitution) and titanite, as well as some
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Figure 72.Simplified bedrock geology map showing the locations of the REE-mineralised iron oxide deposits at Gullebo
and Hylleled, and their spatial relationship to the mineralisations in the Vastervik area (inset rectangle corresponds to
Fig. 42 in this chapter).

rutile or anatase. REEs seem to be mainly concentrated in (a?) relatively fine-grained, sometimes
distinctly platy or sheaf-like mineral(s), giving the impression of alteration products or pseudomorphs
after a primary phase. These are LREE-dominated, with some Y, Ca, F, variable Si, and locally, detect-
able Th content. Not uncommonly, lensoidal, rounded zircon crystals occur in the ore, among others
as inclusions in magnetite. This REE mineralisation was discovered during the Eurare project.

REE enrichment in the Hylleled iron mines, southeasternmost Bergslagen

The Hylleled mines are located at Blidstena in the southeasternmost extension of the Bergslagen ore prov-
ince proper (cf. Fig. 72). Iron oxide mineralisation occurs here as isolated magnetite-rich bodies associated
with amphibolites, as what has been interpreted to be mega-xenoliths in the surrounding granite (Geijer
& Magnusson 1944). This granite, the Loftahammar granite, has been variously ascribed to the Svecok-
arelian intrusions and those of the Transscandinavian Igneous Belt (TIB; Hogdahl et al. 2004), with
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Figure 73. Back-scattered electron
(BSE) image showing a heteroge-
neous aggregate of fine-grained,
LREE-bearing silicate and
probably fluorocarbonate (both
white, centre of image) minerals,
in a groundmass of medium grey
magnetite and silicates (dark
grey). The REE-rich minerals are
most likely alteration products,
representing a heterogeneous
pseudomorph of an unknown
primary phase. The scale bar
equals 30 micrometres. Gullebo
iron mines (6445227/564411).
Photo: Erik Jonsson.

variable reported ages, from c. 1.86 to 1.80 Ga, based on U-Pb dating of zircon (cf. Wikstrom &
Andersson 2004, and references therein).

The ore consists of anhedral to subhedral magnetite, mainly associated with quartz, biotitic mica,
and amphibole, but locally, such as in the sample studied, also with variable amounts of (Cu-Fe)
sulphides.

Within the present project an iron ore sample from Hylleled was subjected to bulk geochemical
analysis (SGUR10232), which yielded 1999 ppm total REE. On the basis of this, polished thin sections
were produced, and subjected to optical and scanning electron microscopy with energy-dispersive
spectrometric analysis (SEM-EDS), in order to characterise the REE host minerals in the ore, and
their textures.

Scanning electron microscopy with EDS analysis showed quite commonly occurring anhedral, some-
times slightly equant grains of fluorapatite (REE-free, as detected by this system, sometimes with
measurable chlorine content), often at least partially enclosed in magnetite. These carry locally abundant,
subhedral, often angular and platy crystals of xenotime-(Y) and monazite-(Ce) (Fig. 74). Texturally,
the latter two phosphates seem to occur as epitaxially oriented exsolutions within the apatite. Monazite-
(Ce) was also observed outside of apatite grains. Minor cassiterite and several anhedral grains of
scheelite were also observed, as was an unidentified, probably oxidic U-Pb-Y-phase.

Based on both the overall mineralogy and textural relationships, this could well represent a previ-
ously unrecognised occurrence of an REE-rich apatite-iron oxide mineralisation (cf. Jonsson et al.
2016, and references therein), although this mineralisation differs from most such deposits studied, in
that the predominant REE phosphate occurring in the fluorapatite is xenotime-(Y), with a marked
content of ytterbium indicated by SEM—EDS. However, the proximity to the Olserum area (south of
Hylleled; Fig. 72) may also indicate some link towards the type of REE mineralisation present there
(which actually overlaps quite a few of the characteristics of apatite-iron oxide deposits). This REE
mineralisation was discovered during the Eurare project.
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Figure 74. Back-scattered electron
(BSE) image showing essentially
anhedral fluorapatite (medium
grey; FAp) associated with minor
silicates (darker grey to black)
intergrown in magnetite (lightest
grey; Mt). This fluorapatite carries
numerous subhedral inclusions of
xenotime-(Y) and monazite-(Ce)
(both white), texturally very
similar to several REE-enriched
apatite-iron oxide ores that have
been studied. The scale bar
equals 20 micrometres. Hylleled
iron mines (6433571/580704).
Photo: Erik Jonsson.

REE enrichment in the Bdckberg iron mines, northwestern Bergslagen

The Bickberg iron mines (Béickbergsgruvorna) are located west of Sunnansjo, in the Grangirde—Ludvika
area of northwestern Bergslagen (northwest of Ludvika; Fig. 75). Overall, the iron oxide (magnetite)
mineralisation is hosted by felsic metavolcanic rocks, but more immediately so by an extensive skarn
(pyroxene-garnet-amphibole-epidote) unit, all cross-cut by numerous amphibolitic dykes (Geijer &
Magnusson 1944). The ore is fine-grained and locally contains pyrite (Ripa et al. 2015).

An iron ore sample (SGUR10058) from the Bickberg mines was subjected to bulk geochemical
analysis, which yielded 2380 ppm total REE. On the basis of this, polished thin sections were produced,
and subjected to optical and scanning electron microscopy with energy-dispersive spectrometric
analysis (SEM-EDS), in order to characterise the REE host minerals in the ore, and their textures.

The main host for REE in the material studied is a somewhat low-REE,_ allanite-(Ce), chemically
trending towards REE-rich epidote, as measured by EDS analysis. These occur as anhedral rounded
grains, and more complexly zoned aggregates, sometimes with a radial habit. The chemical zoning,
visible in back-scattered electron (BSE) image mode on the scanning electron microscope, is essen-
tially related to variations in REE content (Fig. 76). The REE silicates occur both intergrown with
magnetite and isolated in the silicate groundmass. Very small grains of an unidentified U-Pb-rich phase
occur scattered in the material. Textural relationships suggest that the REE silicates are coeval with
the formation of the bulk of the iron oxide-bearing skarn.

This REE mineralisation was discovered during the Eurare project.

The Breddsen REE-mineralised polymetallic iron oxide mineralisation, north-
eastern Bergslagen

The Bredisen area is situated about 45 km north of Uppsala in the northeastern part of the Bergslagen
ore province (Fig. 77). A few minor mines and prospects for magnetite occur here in felsic, weakly
banded metaryolite. The bands consist of mica or skarn. The host rock is also partly quartz or feldspar-
porphyritic. The metavolcanic rocks are surrounded by granitoids (granite-tonalite). Magnetite associ-
ated with pyrite and chalcopyrite occurs in quartz-rich parts of this metavolcanic unit. As observed in
available drill cores, the mica-rich parts consist of biotite and/or chlorite. Polarised light microscopy
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Figure 75. Simplified bedrock geology map showing the location of the REE-mineralised iron oxide mines Bickbergs
gruvorna, in the northwestern part of the Bergslagen province. The locations of the Blétberget and Grangesberg
REE-enriched, major apatite-iron oxide deposits are also shown.

Figure 76. Back-scattered electron (BSE)
image showing fine-grained crystals and
aggregates of euhedral to subhedral REE
epidote-allanite-(Ce) in a skarn silicate
groundmass. The variable (mottled) grey
scale of the crystals is primarily due to
variations in REE content. The scale bar
equals 10 micrometres. Backbergs-
gruvorna. Photo: Erik Jonsson.
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Figure 77. Simplified bedrock geology map showing the location of the Breddsen mineralisation in northeastern
Bergslagen.

revealed coarse chalcopyrite with minor pyrite, and more sulphide-rich samples also carry rare bismuthinite
as inclusions in chalcopyrite. Locally, coarse aggregates of anhedral olive green allanite sensu lato occur,
and these are often cut by secondary fractures filled by e.g. chlorite and additional phases, including REE
minerals (see below). The matrix for these minerals consists of quartz and chloritised biotite.

Scanning electron microscopy (SEM) with energy-dispersive scanning analysis (EDS) confirmed that
the main host of REE in the assemblage are minerals of the epidote supergroup, ranging from REE epi-
dote, to (mostly) very close to allanite-(Ce) in composition. BSE-brighter zones may in partbe Nd-dominant.
The observed, fracture-hosted, later-stage REE minerals, partly associated with similarly late sulphides,
comprise a modestly Y-enriched fluorite (“yttrofluorite”), Ca-bearing REE fluorocarbonates with compo-
sitions near synchysite-(Ce), and sparsely, a mineral with a composition very similar to gadolinite-(Y)
(Figs. 78-80). A preliminary interpretation based on textures and mineralogy suggests that primary REE
mineralisation was related to skarn formation, and that a later stage of brittle tectonism, coupled with fluid
flow, remobilised part of the early components, forming the fracture-hosted, lower-temperature assemblages.
No information concerning the REE mineralogy at Breddsen was available before the present project.
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Figure 78. Back-scattered electron
(BSE) image showing REE-enriched
epidote to allanite-(Ce) (grey-mottled;
REE-Ep) with abundant, small BSE-
white inclusions which consist of an
Y-Fe-silicate (gadolinite-group
mineral?) intergrown with skarn
silicates and quartz (black; Sil) and in
contact with chalcopyrite (white; Cpy).
The scale bar equals 20 micrometres.
Bredasen (6689355/ 661045). Photo:
Erik Jonsson.

Figure 79. Back-scattered electron
(BSE) image showing distinctly zoned
subhedral crystals of REE-bearing
fluorite (FIt; grey shades) in contact
with a later-formed chalcopyrite
infilling (Cpy; white) in a silicate
groundmass (Sil; black). The scale bar
equals 30 micrometres. Bredasen
(6689355/ 661045). Photo: Erik Jonsson.

Figure 80. Back-scattered electron
(BSE) image showing fracture-hosted,
radial aggregates of an REE fluorocar-
bonate close to synchysite-(Y) (white;
Fcb) associated with phyllosilicate
minerals and quartz (dark grey to
black; PSil and Qz) as well as minor
sulphides (lightest grey to white; Cpy =
chalcopyrite, Py = pyrite). The scale bar
equals 20 micrometres. Bredasen
(6689355/ 661045). Photo: Erik Jonsson.
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Secondary/sedimentary REE deposits

Secondary REE mineralisations form when enrichment develops through sedimentary processes such
as erosion and fluvial transport leading to the accumulation of heavy minerals, as well as weathering
and other supergene alteration, and soil development. Relatively few REE deposits or mineralisations
in Sweden can be unequivocally classified as sedimentary in origin. Some occurrences are associated
with geologically younger phosphorites in Sweden; the Tasjo U-REE mineralisation in particular,
located within the lower allochton units of the Caledonian front, is an example of this type of deposit.
The REE-bearing iron oxide mineralisations within the Palacoproterozoic Vistervik formation meta-
sedimentary rocks are examples of the “palacoplacer” type of deposits, i.e. metamorphosed and recrys-
tallised former placer deposits (fluvial heavy mineral accumulations).

Additionally, enrichment of U and LREEs has been noted in metasedimentary rocks at Palinge, about
10 km southwest of Kalix (Fig. 24; Sundvall, 2003; Fagerberg & Sandgren 1970, unpublished report).

REE-(U)-anomalous iron oxide mineralisations in the Vdstervik formation, south-
eastern Sweden

The REE-bearing iron oxide mineralisation at Grins6 Sodra is one of several purported palacoplacer
(metamorphosed heavy sand) deposits (e.g. Gustafsson 1990, 1991, unpublished reports) in the meta-
sedimentary rocks of the Palacoproterozoic Vistervik formation (Fig. 81).

The rocks of the Vistervik formation are variably deformed and recrystallised, but may exhibit
well-preserved sedimentary features, such as primary bedding in many locations (Fig. 82). These
were deposited between c. 1.88 and 1.85 Ga, possibly in a deltaic environment (Sultan et al. 2005),
but also contain a small proportion of zircons that prove deposition as late as c. 1.80 Ga (Claesson
& Sultan 2008). These rocks were affected by the extensive magmatic activity of the Transscandi-
navian Igneous Belt (TIB; Hogdahl et al. 2004), and also underwent high temperature—low pres-
sure metamorphism and deformation, whose effects include local migmatisation (Kleinhanns et
al. 2012). Within this metasedimentary pile are also bedding-parallel, banded occurrences of heavy
minerals, chiefly common iron (and titanium) oxides predominantly comprising magnetite, garnet,
and zircon, butalso including uranium and/or REE-bearing minerals such as uraninite, brannerite
and davidite (Rydberg 1972, unpublished thesis; Gustafsson 1990, unpublished report), i.e. rela-
tively clear-cut palacoplacer mineralisations. These can be exemplified by that exposed at the old
water tower in Vistervik, originally drilled by the Johnson Company, which exhibits “heavy sands”
in quartzite, including anatase, brannerite, davidite, rutile and zircon (Gustafsson 1990, unpublished
report), or the outcropping, folded layers of heavy minerals at Klockartorpet, which exhibit marked
content of e.g. Zr, Y, U, Th, and Fe, as measured in situ using a portable XRF (Fig. 83).

Later remobilisation, particularly of uranium, from these palacoplacers led to precipitation of secon-
dary minerals on fractures cross-cutting the stratification (e.g. Rydberg 1972, unpublished thesis;
Lofvendahl 1981).

Less obvious interpretations can be made from some other REE-U-enriched mineralisations in the
Vistervik formation, such as at Sédra Grinso. Based on earlier work, Gustafsson (1990, unpublished report)
referred to high yttrium content from Grinso as a reason for further exploration, calling it a “heavy mine-
ral accumulation”, i.e. a palacoplacer. A field visit, as well as observations made by means of an SEM study
during the present project, suggest that this interpretation is somewhat problematic, at least as the singular
process leading to the present mineralised system at Grinso Sodra in particular. The abundance of phyl-
losilicates directly associated with visible iron mineralisation in outcrop and dump material, as well as at
microscale, suggests potential hydrothermal input, and there may be a genetic link to the genetically
contentious mineralisations of the Olserum type (e.g. Andersson et al. 2016a,b; see that entry).

No information concerning the REE host mineralogy was available before this project.
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Figure 81. Simplified bedrock geology map showing the location of the Gransé Sédra and Klockartorpet mineralisations
in the Vastervik area.

Based on a scanning electron microscope study (with EDS analysis; cf. Figs. 84-86), the major host
minerals for the REEs identified at Grinso Sédra are monazite-(Ce), xenotime-(Y), unidentified,
partly altered REE-bearing oxidic uranium minerals (a U-Pb-Y-Dy-O-mineral, as well as partially
altered wolsendorfite?), and a late-stage REE fluorocarbonate. Not least the occurrence of xenotime-(Y)
in the material studied explains its yttrium-rich nature, as noted by Gustafsson (1990, unpublished
report).
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Figure 82. Primary bedding in the
Vastervik formation metasedi-
mentary rocks at Berg, east of
Gamlebyviken (6410970, 591620),
between Vastervik and Gamleby.
Photo: Erik Jonsson.

Figure 83. Deformed primary
bedding of bands of dark heavy
minerals in Vastervik formation
metasedimentary rocks at
Klockartorpet (6407832/ 588135).
Photo: Erik Jonsson.



Figure 84. Back-scattered electron
(BSE) image showing an overview of
“heavy mineral bands” in a quartzitic
rock from Granso Sodra: the predomi-
nant white mineral is magnetite;
smaller white(r) grains are monazite,
xenotime and U-rich phases. The
medium grey mineral directly
associated with magnetite is a biotitic
mica. The dark grey/black groundmass
is quartz. Photo: Erik Jonsson.

Figure 85. Back-scattered electron
(BSE) image showing subhedral
monazite-(Ce) crystals (white)
intergrown in biotitic mica, with
associated partly altered iron oxides
to therightin the image. Photo: Erik
Jonsson..

Figure 86. Back-scattered electron
(BSE) image of REE mineralisation at
Grdnsd Sodra: a subhedral crystal of
xenotime-(Y) (white), enclosed in
biotite (dark grey, platy), in contact
with subhedral to anhedral fluor-
apatite (light grey) enclosed in quartz
(darkest grey/black). Photo: Erik
Jonsson.

RARE EARTH ELEMENTS DISTRIBUTION, MINERALISATION AND EXPLORATION POTENTIAL IN SWEDEN R & M 146 109



10

The Tdsjé U-REE prospect

The Tasjo U-REE prospect is situated in the Caledonides, approximately 45 km northwest of Dorotea
in Visterbotten County, close to the border with Jimtland County (Fig. 87). It was discovered in 1957
by the Swedish Atomic Energy Company during uranium exploration. Since the discovery the Tisjo
area has been explored in several times, with nearly one hundred core drillings have been made over
an area of approximately 500 km?. The drilling programme was mainly funded by the Geological
Survey of Sweden in the 1960s and 1970s (Gustafsson 1979). In addition, the T4sj6 area was claimed
and further investigated by Mawson Resources Ltd between 2006 and 2010, with more drilling taking
place. Mawson estimated the total tonnage of the area to be 75-150 million tonnes of ore at 0.03-0.07%
uranium oxide and 0.11-0.24% total REE.

550000 575000

i
[
@®  T4sj6 U-REE prospect [ ] Gabbro and dioritoid, 1.8 Ga 0 5km
[ S
—— Brittle-ductile deformation zone [ ] Metagreywacke and paragneiss, 1.96—1.87 Ga
[ ] Quartzarenite L] Metagreywacke and paragneiss, 1.96—1.87 Ga
[ ] Granite and pegmatite, 1.85-175Ga [ | Greywacke and limestone
[ ] Granitoid, 1.91-1.87 Ga [ ] Alumshale, allochton
[ Granite and granodiorite, 1.8 Ga [ 1 Alumshale, autochton
[ ] Gabbro and dioritoid, ca 1.91-1,87 Ga

Figure 87.Simplified bedrock geology map showing the location of the Tasjé U-REE prospect at the border between
Vasterbotten and Jamtland counties.
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Geological setting and mineralogy

The U-REE mineralisation at T4sjo is hosted by a phosphatic calcareous silt-sandstone (phosphorite)
of Lower Ordovician age, stratigraphically overlying an alum shale (Asklund & Thorslund 1935;
Andersson 1971; Gee 1972). The mineralisation is associated with apatite, which locally represents up
t0 20% of the rock (Gee 1972). The apatite-rich U-REE-bearing layer is generally 3 to 10 m thick. The
mineralised unit is poorly exposed but has been studied in detail in drill cores (Andersson 1971). One
of the best studied sites is 2.5 km northeast of Lake Tésjon (Kronotorpet prospect), where the mine-
ralised unit has been identified by drilling, from the surface to approximately 40 m vertical depth over
an area of 0.3 km? (Hudson 2007). The total REE content in drilled sections at Krontorpet averages
0.09%, and the predominant REEs are Y, Ce, Nd, Eu and Yb.

A petrological study on the mineralised silt-sandstone unit shows that the major gangue minerals
are glauconite, calcite, dolomite, siderite, carbonate-fluorapatite and quartz (Andersson 1971). The
carbonate-fluorapatite is the main carrier of uranium and REE, and is generally associated with glau-
conite and carbonate minerals. The apatite appears as rounded or ellipsoidal grains varying in colour
from light brown to black (Andersson 1971).

Notably, several additional names have been and are being used for prospects and projects in this
mineralised sequence.
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DISTRIBUTION OF RARE EARTH ELEMENTS
IN SWEDISH SOILS AND ROCKS

Martiya Sadeghi

The Geological Survey of Sweden carried out a research project on the distribution of rare earth ele-
ments in soil, till and underlying bedrock across Sweden during 2012-2015 (Sadeghi & Andersson
2015). The main aims of the project were to collect available data on rare earth elements from the
FOREGS database (subsoil and topsoil) (Salminen et al., 1998), GEMAS project (agriculture and
grazing land soil) (Reimann et al. 2014a, b) and Geochemical Atlas of Sweden (till data) (Andersson
etal. 2014), and to identify the variations in REE distribution in bedrock and REE mineralisations in
Sweden. The first part of the study has been published by Sadeghi & Andersson (2015), where the fol-

lowing information is provided:

e Identification of the main changes in REE distribution related to geology and weathering

e Collection of basic information on REE in Sweden

e Construction of baseline level for REE in soil and bedrock (SGU lithogeochemical data) over
Sweden

e Baseline maps for Sweden using the FOREGS and GEMAS databases.

e Description of anomalies and/or higher concentrations of REEs on maps related to geogenic
phenomena.

e Summary statistics and application of statistical methods in interpretation of the data

The Geochemical Atlas of Sweden was published in 2014 (Andersson et al. 2014). It provides a harmo-
nised, nationwide database with modern baseline geochemical data from the C horizon in till. The
work was carried out between 2011 and 2014, and was based on till samples from the SGU archive as
well as new sampling of till, conducted mainly in the mountainous areas of western Sweden. The Atlas
includes a separate chapter on REE distribution in till in Sweden.

The FOREGS data (Salminen et al. 2005) have been investigated by Sadeghi et al. (2013a, focusing
on REEs in different solid media (topsoil, subsoil and stream sediments) in order to identify REE
background values (Sadeghi et al. 2013a). One of the main aims of this study was to compare the
Swedish background values for REEs in different solid media with European levels. It was concluded
by Sadeghi et al. (2013a) that lithology and bedrock geology are major factors controlling REE content
in soil, so the main bedrock units in Sweden were introduced and a comprehensive introduction to
Swedish bedrock geology was included. Another factor governing REE distribution in soil is minera-
lisation in underlying bedrock. This relationship has been presented as a map of REE mineralisation
of various origins, the first of its kind published in Sweden (Sadeghi et al. 2013a).
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Maps with interpolated REE concentrations have been produced, and anomalies or higher concen-
trations than the median value for each element are shown on each map and compared with Euro-
pean levels. Generally, both LREEs and HREEs show good internal correlation, whereas there is only
a weak correlation between the groups. Principal component analysis (PCA) has been used, and the
results of PC1 reveal two groups of association: one representing LREEs and the other HREEs. Colour
composite maps derived from PCs also seem promising as a way of differentiating lithologies. Archae-
an rocks in northern Sweden, younger phases of the Svecokarelian orogeny, the greywackes of the
Bothnian basin and young granites in the southwest stand out particularly in these plots (Fig. 88).

GEMAS is a joint project between the EGS and Eurometaux (Reimann et al. 2014a,b). Sadeghi et
al. (2013b) investigated the GEMAS data with the emphasis on REEs in two solid media (top soil from
agriculture (Ap) and grazing land (Gr) soil) to identify the background values of REEs in Sweden and
in Europe. The Ap and Gr samples were partially leached in aqua regia and analysed using ICP-MS.

A B C

Topsoil Sediments

REE mineralisation types

@ Apatite-iron-oxide @ Carbonatite @ \Vein quartz/breccia
@ Iron-oxide skarn O Granite-pegmatite =~ @ Paleoplacer
PC2 PC3 @ Sulphide-skarn @ Syenite O Phosphorite

Figure 88. Colour composite images of PC1(red), PC2 (green) and PC3 (blue) of individual Swedish FOREGS datasets:
A. topsoils; B. subsoils; C. stream sediments.
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Total REE concentrations were analysed using XRE. Sadeghi et al. 2013b discuss and compare Ce, La
and Y concentrations based on analytical method and sample type. Raster maps for those three elements
were produced for the whole of Europe. Interpolated maps using ArcView software and the Inverse
Distance Weighting (IDW) method were generated and then classified using the concentration area
(CA) fractal method (Cheng et al. 2011).

The REE and phosphate mineralisation/fertiliser map of Europe has been produced to show the
correlation between REE concentration in soil and the presence of mineralisation. Sadeghi etal. (2013b)
describe 40, 37, and 30 anomalies for Ce, La and Y, respectively. Of these, seven Ce, six La and five Y
anomalies occur in Sweden. This study presented the ratio maps of Y/Ce and Y /La to show a correla-
tion between REEs and the occurrences of ophiolites, alkaline and carbonate rocks.

An article by Petrosino et al. (2013) compares the FOREGS data on four sample media (topsoil,
subsoil, and floodplain and stream sediment) between Italy and Sweden. Both countries show anoma-
lous concentrations of REEs in arable soil, while having substantially different bedrock geology and
soil cover developed under contrasting climate conditions. Basic statistical parameters for REE FOREGS
data in four sample media are presented for the two countries and are accompanied by interpolated
maps and anomaly description.

Principal component analysis has been used on FOREGS REE soil data in line with the approach
by Sadeghi et al. (2013a). Based on PCA, several REE enrichment locations could be recognised in
Sweden and explained by the presence of mineralisation; some REE enrichment in Italian soil more
likely originates from the use of fertilisers.

Another source of REE enrichment is clay-rich soil, e.g. in eastern Sweden (Central Scandinavian
clay belt) and alkaline volcanic and plutonic rocks in Italy. It has been concluded that the main factors
controlling REE content in soil are: lithology, mineralisation, type of soil, weathering style and climate.

Sadeghi etal., (2015) discussed REE concentration in Swedish and Italian soils obtained from weak
MMI® extraction and near total extraction. The results from MMI® extraction show that HREE
enrichment in Swedish soil is comparable to the location of known REE mineralisation. In this study,
the clr-transformation method has been used for principal component analysis.

Although all REEs have similar chemical properties and their spatial pattern tends to be similar,
there are some differences in their distribution in soil. For example, using the near total extraction
method, Ce concentration (LREE) shows elevated levels in central Sweden, which may relate to the
presence of fine-grained (clay size) deposits. In the Bergslagen district, elevated Ce is possibly related
to REE mineralisations, such as in the Bastnis area, where Fe and Cu skarn mineralisations are also
known. Soil samples collected in areas with granitic and pegmatitic bedrock in southern and western
Sweden usually show a higher concentration of Ce. The highest concentration of Ce has been found
in the sample from the tectonic window in the Caledonides, where the bedrock is composed of
Proterozoic felsic igneous rocks, locally with Zn mineralisation (Sadeghi et al. 2015).

Near total extraction (SPF) shows two large regions with high yttrium concentrations. The first large
Y anomaly extends from the northwestern part of the Swedish Caledonides in Norrbotten eastwards
towards the Finnish border, where the soil developed from predominantly granitoid parent material
and overlaps with some Th and U mineralisations. The second region with high Y concentrations occurs
in central Sweden (Bergslagen); there, the large Y anomaly can be explained by clay-rich surficial
deposits overlying felsic igneous rocks. This is an area with numerous Zn, Fe, Pb skarn mineralisations
and local REE-enriched pegmatites (e.g. Ytterby).

The results from weak MMI® extraction show several single point anomalies that coincide gene-
rally with the granitic bedrock, U and Th mineralisations, and probably also pinpoint alkaline rock
occurrences (e.g. carbonatite at Alng) containing REE-bearing phosphate minerals (such as monazite,
xenotime, apatite) (Fig. 89). The largest Y MMI® anomaly occurs in the Bergslagen district in conjun-
ction with occurrences of granitoids, alkaline rocks, felsic volcanic rocks as well as mineralisations with
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Figure 89. Colour map for Y in Ap soil in Sweden for MMI® extraction and sodium peroxide fusion technique (SPF)

REEs, Be, Cu, Ag, U and with Fe, Pb, Zn and Cu in skarns. Yttrium, with its strong tendency to bind
to clay particles, is also enriched in areas with postglacial clay deposits and located below the highest
coastline (Bothnian Bay coastal region, Bergslagen and near lake Vinern).

Lithogeochemistry and till data from the SGU database have been used to examine links between
REE concentrations in bedrock and till with known REE mineralisation. This may provide a tool for
future exploration and predictive mapping surveys. Generally, primary REEs are associated with mag-
matic (granite, pegmatite) and alkaline rocks. Rocks enriched in monazite and zircons often contain
higher concentrations of rare earth elements. Sedimentary rocks, such as shale and greywacke, generally
contain higher concentrations of rare earth elements than sandstone and limestone. During weathering
rare earth elements are generally not very mobile, but this varies depending on the mineral in which they
occur. Mobility is inhibited by adsorption onto iron oxides, phosphates and clay minerals. There are no
obvious differences in the geochemical distribution patterns of elements in the LREE group (La, Ce, Pr,
Nd and Sm) and the HREE group (Eu-Lu +Y) in till. However, their relative concentrations may differ
in the anomalies of each element, probably due to the mineral composition of the till. For example,
Europium is found in rock forming minerals such as plagioclase and in accessory minerals, mainly in
allanite, bastnisite, monazite, apatite, zircon and fluorite. Europium differs chemically from other rare
earth elements, since the element can replace strontium and occurs in plagioclase and strontianite. High
concentrations of Europium therefore occur in calcium-rich soils, for example in northernmost Sweden,
where till has developed on bedrock composed of Svecokarelian gabbro-diorite and granite.

Our results show there to be a clear correlation between REE anomalies in surficial deposits and
natural factors such as the lithology of the underlying bedrock, the presence of mineralisation, soil pH,
climate and precipitation. A summary of the statistical parameters for REEs in different media is

presented in Table 9, modified from Sadeghi & Andersson (2015).
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GEOCHEMISTRY OF REE MINERALISATIONS

Martiya Sadeghi

REE deposits may be divided into regolith, basinal, metamorphic and magmatic associations based
on a mineral system approach (“mineral system association” Fig. 90). An essential element of the
magmatic association is the emplacement of an REE-enriched melt. Various deposit types result either
directly from crystallisation of the melt and/or fluids predominantly derived from the melt. The mag-
matic association deposit may essentially be divided into orthomagmatic and hydrothermal types.
In the orthomagmatic type, the REE-bearing mineral(s) form from crystallisation in a magma or from
a hydrothermal fluid exsolved from that magma. In the hydrothermal type, the REE-bearing mineral(s)
form from a fluid apparently not chemically related to orthomagmatic processes.

Deposit types of the basinal association can be formed from mechanical (e.g. placer) and chemical
(e.g. phosphorite) sedimentary processes and from diagenetic fluids generated in sedimentary basins.
Deposit types of the regolith association require an REE-bearing source rock to form economic-grade
concentrations of REE. REE deposits are formed either due to enrichment of REE in the residual
material and/or from local remobilisation of REE.

Deposit types of the metamorphic association are generated during regional and/or contact meta-
morphism and involve metamorphic-derived fluids.

Hydrothermal REE mineralisations

Evaluation of the REE geochemistry of hydrothermal mineral deposits, and the processes by which
they are concentrated, is a complex task (Samson & Wood 2005). However, these mineralisations can
be grouped on the basis of their geochemical and mineralogical characteristics. The degree of REE
enrichment in a deposit is a function of the concentration of REE in the fluid, the water-rock ratio,
the efficiency of the precipitation process and the nature and amount of co-precipitated phases (Sam-
son & Wood, 2005).

Oreskes & Einaudi (1990) suggested that the high abundance of fluorocarbonates and the lack of
Ca minerals in REE deposits (e.g. Olympic Dam) indicated that the fluids behind hydrothermal REE
mineralisations may have been F- and CO,-rich and that the REEs were transported as Cl and/or F
complexes. Lottermoser (1995) suggested that the association of REE with U minerals indicated that
U and REE were complexed by the same ligands and inferred that those were CO;, F or SOy.
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Figure 90. Geochemical cycle for rare earth elements (only REE mineralisations in Sweden have been considered here;
modified from Hoatson et al. 2011). Alkaline and carbonatitic melts, produced by the partial melting of mantle, transport
rare earth elements from the mantle into the crust. Granites that are produced from the partial melting of crustal
material are also enriched in rare earth elements (less enriched than alkaline and carbonatitic melts).

Orthomagmatic REE mineralisations

In some cases, carbonatites represent orthomagmatic-type REE mineralisations that tend to be variably
enriched in a elements including REEs, Sr, Ba, U, Th, Nb, Ta, P, and F. Although the overall REE
content of carbonatites may vary, their shape on the chondrite-normalised plots almost invariably
displays high LREE content and no negative Eu anomalies (Verplanck et al. 2016). REE-bearing
mineral phases have the highest REE content, but major carbonate minerals, including calcite and
dolomite, may also contain substantial concentrations of REEs (Mariano 1989). Barium and strontium
are generally abundant, whereas uranium, thorium, niobium and phosphorus are variably abundant
in the mineralised carbonatite.

Chemically, Potassic lamprophyre dykes are normally characterised by relatively low SiO,, TiO,
and high MgO, K, O concentrations. In addition, they show high content of other large-ion lithophile
elements (e.g. Rb, St, Ba) and LREE, but low content of high-field-strength elements (e.g. Nb, Ta, Zr,
Hf, and Ti) (Chai et al., 2006).
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Several REE deposits associated with peralkaline complexes (syenitic rocks) have a number of geo-
chemical characteristics in common; e.g., they are mostly enriched in U and Th and have a relatively
high HREE content but low LREE content compared with carbonatites (Dostal 2016). In general,
sovitic carbonatitic melts show the highest levels of REE enrichment. They also show significant enrich-
ment in LREE (LREE/HREE ratio of ~40, compared with -7 for alkaline and felsic melts).

Partial melting of crustal material also produces felsic melts that are enriched in REE, but the
enrichment factors are relatively smaller (by an order of magnitude). Elements in pegmatites that may
be enriched to minable (ore) grades include Li, Cs, Be, Sn, Nb, Ta, U, Y, Zr, and REE. This long and
diverse list of elements, to which significant high content of B, P, F, Rb, Bi, Hf, etc. could be added,
makes fractionated pegmatites among the most mineralogically complex deposit types on Earth.
Pegmatitic facies associated with syenite-alkaline granite complexes constitute important deposits of
REE, U, Nb and Zr, and less commonly, Be and P (London 2016).

Jolliff et al. (1992) observed appreciable heterogeneity in the modal compositions of border zone
samples of individual pegmatites, and statistically a poor correlation between Rb and Cs content in
muscovite and the known internal zonation of the bodies. However, they did recognise a trend in
K/RD ratios versus Cs content that correlated in a general sense with the overall chemical fractionation

of the body (Jolliff et al. 1992).

Placer and phosphorite REE mineralisations

Trace elements associated with heavy mineral placers primarily include Ti, Hf, the REEs and Y, Th,
and U. These elements may be used for the analyses of stream sediments to evaluate the presence of
heavy mineral sands on a regional scale (Grosz 1993). These pathfinder (exploration) elements reflect the
composition of the potentially economic heavy minerals of this deposit type, including ilmenite (FeTiO5),
rutile (TiO,), zircon (Zr, Hf, U) SiO,), monazite (La, Ce, Th, U) PO), and xenotime (YPO,). Mona-
zite is preferentially enriched in LREEs relative to HREEs. Variation in chemistry at deposit scale most
likely indicates variations in heavy mineral content rather than geochemical gradients due to hypogene,
hydrothermal or supergene processes. Hydrothermal alteration and other forms of geochemical diffu-
sion that are typical of most ore deposits are not associated with heavy mineral sands.

Phosphorite is a marine sedimentary rock in which phosphate minerals are the main constituents
(more than ~18 % P,Os; Cathcart 1980b). “Francolite” is essentially the only phosphate-bearing mine-
ral present in phosphorites unaltered by metamorphism or weathering. This structurally and chemi-
cally complex mineral is a carbonate-fluorapatite with >1% F and believed to contain appreciable
amounts of CO, (Jarvis et al. 1994). The major element geochemistry of unaltered

francolite is relatively uniform and includes approximately 32 to 40% P,0s5, 50% CaO, 5% CO,,
4% F, 3% SO, and 1% Na (Jarvis et al. 1994, Piper 2001). The apatite structure allows numerous
trace element substitutions, including of the REEs. Rare earth element enrichment in francolite,
whereby REE is substituted for Ca in the mineral lattice (Jarvis et al. 1994, Piper 1999), was documen-
ted more than a century ago (Jarvis et al. 1994).

REE chemistry in Sweden
During the EURARE field campaign approximately 200 samples were taken for petrography and

mineralogy studies and for geochemical analysis. The location of the samples and type of mineralisa-
tion are shown in Fig. 91, and the results of samples analysed are given in Appendix. 1.
The geochemical analyses of the samples collected during the EURARE project show that 68
samples have a total REE content above 1000 ppm and of those 28 have more than 1% total REE.
The samples with more than 1% REEs represent mineralisations classified in this project as: iron
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Figure 91. Simplified location map of samples in the EURARE project.

oxide apatite (4 samples), magnetite-calc-silicate skarn (11 samples), magnetite-hematite-quartz
(BIF; 2 samples) and granitic pegmatite (11 samples). These resulted are summarised in Table 10.

A bivariate plot of La vs La/Yb (Fig. 92) shows a weak but overall positive correlation between the
two variables, except in some samples, which show higher HREE concentrations. This suggests that
those samples with a high LREE content also have relatively high LREE/HREE ratios. They mostly
represent REE mineralisations associated with granitic pegmatites. Some samples from iron oxide-
apatite deposits contain REE-bearing minerals such as xenotime and monazite, and show higher
concentrations of HREE (Fig. 92).

Thorium and uranium content and their ratio are useful for recognising geochemical facies and also
the content of radioactive elements in different types of mineralisation. In some samples from REE
mineralisations the total content of REEs shows a positive correlation, with elevated U and Th con-
centrations (Figs. 93a-b). Fig. 93a shows Th concentration versus total REEs. In general, skarn and
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Table 10. Summary of samples analysed with a total REE (TotREE) content above 1% (10,000 ppm). N and E are

SwerefTM coordinates.

Name N E Type TotREE  LREE HREE
Stalklockan 6635349 532852 Magnetite-Calc silicate skarn 45511 34001 11510
Taresdive Mo-REE 7421196 709317 Pegmatite/aplite 42651 33055 9595
Bastnas 6634470 532926 Magnetite-Calcsilicate skarn 38078 33149 4929
Bastnas 6634470 532926 Magnetite-Calc silicate skarn 38078 33149 4929
Bastnas 6634425 533003 Magnetite-Calcsilicate skarn 37907 33134 4773
Gyttorp 6597427 497660  Magnetite-Calc silicate skarn 37069 33233 3835
Mérkens 4 6662160 577465 Magnetite-(Fe-sulphide)-Calc silicate skarn 36921 33224 3696
Djupedalsgruvan 6425442 578440  Magnetite-Calc silicate skarn 34643 22745 11897
Ytterby 6592332 690226  Pegmatite/aplite 30624 13624 17000
Rodbergsgruvan A 6597194 494237  Magnetite-Calcsilicate skarn 30536 29378 1157
Ostanmossa 6660543 551764 Magnetite-Calcsilicate skarn 30318 28849 1469
Djupedalsgruvan 6425442 578440  Magnetite-Calcsilicate skarn 29990 16625 13364
Holmtjarn 6691407 514383 Pegmatite/aplite 29550 12550 17000
Ytterby 6592332 690226  Pegmatite/aplite 26418 10238 16180
Djupedalsgruvan 6425442 578440  Magnetite-Calcssilicate skarn 25903 1132 14771
Mérkens 4 6662160 577465 Magnetite-(Fe-sulphide)-Calc silicate skarn 24970 21635 3335
Gruvhagen SVom 6662377 577026 Magnetite-Calcsilicate skarn 24574 23618 955
Knutsbo gruvor
Ytterby 6592332 690226  Pegmatite/aplite 18695 3801 14894
Reunavaare 7342033 697981 Pegmatite/aplite 18206 13158 5048
Tybble gruva 6517096 516016 Apatite Iron Ore 17427 17273 153
Flakaberget 7389427 703658 Pegmatite/aplite 15555 1627 13928
Johanna 6658660 550883 Magnetite-Calc silicate skarn 14007 12965 1042
SVEAFALLEN 6563279 467518 Pegmatite/aplite 13220 12579 641
SVEAFALLEN 6563279 467518 Pegmatite/aplite 13220 12579 641
Mérkens 4 6662160 577465 Magnetite-Calc silicate skarn 1no77 9203 1874
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La

Figure 92. Bivariate plot of La versus
La/Yb for the samples analysed.
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Figure 93. Bivariate plots of A. Th vs total REE; B. U vs total REE; C. Th/U vs total REE; and D. log Th/K ratio vs log Th/U ratio
for the samples analysed. Symbols as in Fig. 92.

iron oxide-apatite mineralisations with higher concentrations of total REEs show a positive correlation
with low concentrations of Th. A few samples from iron oxide-apatite mineralisations show higher
concentration of Th up to 200 ppm and total REE concentrations of up to 3.5%. Granitic pegmatites
and lamprophyres show higher concentrations of Th, whereas those of total REEs are low, which means
that the concentration of Th in those samples is not related to REE-bearing minerals, and Th and U
concentrations are probably related to rock-forming minerals such as feldspar and plagioclase.

The U/total REE ratios (Fig. 93b) of the samples analysed show that those with higher concentra-
tions of U belong to REE mineralisation in granitic pegmatites. A few samples from skarn-type
deposits show higher concentrations of U, >1000 ppm. Of those, one also shows a higher content of
total REE, which may reflect the concentration of U in the REE-bearings minerals.

A plot of Th/U ratio versus the concentration of total REE (Fig. 93¢) shows that lamprophyres with
low concentrations of total REE have higher Th than U concentrations. The Th/U ratio is generally
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low in the samples from skarn and iron oxide-apatite REE mineralisations. Two samples of iron oxide-
apatite REE mineralisation from the Djupedalsgruvan show high concentrations of both Thand REE.
Those two samples contain xenotime and allanite minerals (Fig. 93¢). Two samples come from other
iron oxide-apatite REE mineralisations, and show higher concentrations of total REE and Th. The
plot of Th/K versus Th/U shows a positive correlation between U and K in the skarn type but less so
in REE mineralisations associated with granitic pegmatites (Fig. 93d).

Fig. 94 shows positive correlations between some trace and rare earth elements and total concentration
of REE. In general, Ce and La show a linear correlation with total REE, but several samples belonging
to the granitic pegmatite mineralisations contain higher total REE, whereas Ce and La concentrations
are not very high. This means that some of those samples have relative enrichment of HREE.

There is no correlation between Y and total REE in the samples analysed. Those with higher con-
centrations of Y and total REE are related to samples with obvious REE mineralisation.

Sr is an element that can be used to distinguish lamprophyres and carbonatites from other types of
REE mineralisation. High Rb content was observed in a few samples. Most REE mineralisations asso-
ciated with iron oxides without apatite contain higher content of both Rb and total REE. Higher Zr
content is only observed in REE mineralisations associated with granitic pegmatites.

Unmineralised or less REE-mineralised iron-oxide apatite and skarn samples show a range in Fe
oxide concentrations. whereas REE mineralised ones only show lower Fe concentrations. This charac-
teristic may be related to the presence of silica and actinolite. This means that no iron oxide-apatite
and skarn type samples with more than 40% Fe,O; show high concentrations of REE.

Chondrite-normalised (McDonough & Sun 1995) REE diagrams for carbonatites display enrich-
ment in LREE and no Eu depletions (Fig. 95a). The samples with REE mineralisation differ from
non-mineralised ones based on LREE enrichment factors. One carbonatite sample shows higher con-
centrations of HREE than the other (Fig. 95a). Similar patterns are displayed by the lamprophyre
samples (Fig. 95b).

Chondrite-normalised REE patterns (McDonough and Sun 1995) for samples with TREE above
1% represent iron skarn-type mineralisations. They show enrichment in LREE, a flat HREE segment
and pronounced Eu depletion in most cases (Fig. 95¢).

Iron oxide-apatite samples with some sulphide mineralisation show REE patterns similar to those
of the iron oxide skarn samples, with enrichment in LREE and negative Eu anomalies, whereas the
segment of HREE generally decreases from Tb to Lu (Fig. 95d). The samples of magnetite-hematite-
quartz (BIF) display similar trends (Fig. 95¢).

The chondrite-normalised (McDonough & Sun 1995) REE patterns for pegmatite samples show
distinct depletion of Eu and enrichment of LREE as well as HREE in some cases. Mineralised and
non-mineralised pegmatite samples are differentiated in this diagram (Fig. 95f). Nepheline syenite
samples show similar trends to those for the carbonatites and lamprophyres with no Eu depletion and
decreasing content from LREE to HREE (Fig. 95g).

There are several iron oxide samples that cannot be classified (more mineralogical and petrological
investigations are needed). However, their REE patterns suggest they constitute two groups. One group
shows a similar trend to the iron oxide-apatite- and skarn-type REE samples, with a negative
Eu anomaly, although they have overall higher concentrations of HREE. The other group shows weak
positive Eu anomalies and decreasing trends from LREE to HREE (Fig. 95h). They may have an
alkaline or peralkaline origin, but this also needs investigation and research (Fig. 95h).
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Figure 94. Plots of some elements versus total REE in the samples analysed. The figure continues on the next page.
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Multiple plot of TotREE vs. Ce, La, Rb, St, Y, Zr, Ba, K,0/Na0, Fe,03
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Figure 94. Plots of some elements versus total REE in the samples analysed. Continuation from the previous page.
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Principal component analysis

Principal component (PC) analysis is a conventional multivariate technique that is often is used for
studying geochemical data (Carranza 2008, Grunsky 2010, Sadeghi et al. 2013a). PC analysis reduces
alarge number of variables to a smaller number, allowing the user to determine the components (groups
of variables) that account for variation in multivariate data (Giiller et al. 2002). PC analysis has often
been used to process and interpret geochemical and other types of spatial data (e.g., Harris et al. 1997,
Carranza 2008, Cheng et al. 2011, Sadeghi et al. 2013 a, b). PC analysis is founded on the correlation
(covariance) matrix, which measures the interrelationships among multiple variables. The first PC
(PC1) explains most of the variance within the original data, and each subsequent PC (PC2-n) explains
progressively less of the variance. A multivariate dataset can usually be reduced to two or three PCs
that account for the majority of the variance within the dataset.

PC analysis was performed on average values of the different mineralisation types as discussed above.
Thirty-seven elements were chosen for PC analysis based on correlation coefficients. The results are
reported in Table 11, and show that PC1 and PC2 explain 32% and 13%, respectively, of the total vari-
ance among the REE-mineralised samples. It implies that in PCI there is an association of CaO, Cr,O;
and Fe,O;, which probably represent iron-oxide apatite and skarn samples, while there is an association
of Na,O-BaO-H{-Sr, representing REE mineralisations associated with felsic rocks and pegmatite.

The PC2 shows an association of Al,0;-Na,O-LOI-C-Nb-Sr-Ta-Th, which probably represents
granite-pegmatite associated with polymetallic mineralisation (Table 12).

Table 11. Principal component loading, eigenvalues, % variance explained and cumulative % variance for PC1to PC5.

Eigenvalues of correlation matrix, and related statistics

Value number Eigenvalue % Total Cumulative % eigenvalue Cumulative % variance
PC1 12 32 12 32
PC2 5 13 7 45
PC3 3 10 21 56
PC4 3 8 24 64
PC5 2 5 26 70

Table 12. Explanation of the five principal components for elements analysed, accounting for 74% of the total variance.

Log normal transformed data

Component % ofvariance  Association Interpretation
explained
PC1 32 (i) Cao-Cr,05-Fe, 04 (i) Iron skarn
Vs
(ii) Na,0-BaO-C-Hf-Sr (ii) Felsic rock
PC2 13 (i) Al,O3-Na,O-TiO,-SrO-LOI-C-Nb-Sr-Ta-Th (i) Lamprophyre and peralkaline rock
(i) MgO-MnO-Er-Ho-Lu-Tm-Yb (ii) REE enrichment in Mafic rock
PC3 10 (i) CaO-MnO-Dy-Ta-Tb-Th REE enrichment related to plagioclase
content in rock
(i) Na,O
PC4 8 (i) Si0,-K,0-Gd-Nb (i) Granite pegmatite bearing critical metals
(ii) MgO-TiO,-S-Dy-Rb-Tb (ii) Mg skarn with sulphide mineralisation
PC5 5 (i) Fe,05-Na,0-P,0,-Ce-Er-Ho-La-Tm-Y (i) 10A mineralisation
(ii) SrO-C-Gd-Sm (ii) Carbonatite?
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Plots of pairs of PCs have been produced and show that it is possible to distinguish between different
types of REE mineralisation or to distinguish between samples with higher concentration of REEs and
those with less (Fig. 96). For example, in the plot of PCl versus PC2 (Fig. 96a) there are several clusters
representing an association of REE, iron oxide and rocks associated with Ta-Nb mineralisation. A plot
of PC2 versus PC4 distinguishes between REE mineralisation associated with Mg-skarn, Fe-skarn,

Ta-Nb-bearing granite-pegmatite and lamprophyre (Fig. 96b). Summarised explanations of the PC
plots are given in Table 13.
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Figure 96. Plots of A. PC1vs PC2; and B. PC2 vs PC4.
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Table 13. Summary of bivariate plot pairs and eventual interpretation.

Biplots Interpretation — distinguish group

PClvs PC2 Lamprophyre-REEs- pegmatite/aplite bearing Nb, Ta

PC1vs PC3 REE-related apatite ore

PClvs PC4 REE-related apatite ore-lamprophyre-Pegmatite/aplite bearing Ta

PC1vs PC5 REE-related apatite ore

PC2vs PC3 Granite bearing Nb and Ta-Mg-skarn REE mineralisation

PC2vs PC4 Lamprophyre-Mg-skarn bearing REE — granite/volcanic bearing Ta and Nb
PC2vs PC5 Mg-skarn bearing REE — granite/volcanic bearing Ta and Nb

PC3vs PC4 Iron oxide-apatite mineralisation —non-mineralised lamprophyre

PC3vs PC5 Non-mineralised granite — REE-related apatite-mineralised lamprophyres
PC4 vs PC5 Non-mineralised granite —mineralised granite enriched in Ta-Nb
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CONCEPTUAL MODELS FOR RARE EARTH ELEMENT
EXPLORATION IN SWEDEN

Martiya Sadeghi & Magnus Ripa

This section presents a synthesis of major prospecting and exploration methods. Different key criteria
for prospecting based on the mineral system framework have been used to form a general conceptual
model for each type of REE mineralisation. The models may be used to suggest which method should
be used and where to look for new targets. They may also be used to map mineral system factors and
in prospectivity analysis methods.

Mineral deposits can be grouped or classified into different types, depending on their characteristics.
Each class (which may include considerable variation) can be represented by an idealised mineral
deposit, known as a mineral deposit model (Bonham-Carter 1994). Mineral deposits models are con-
ceptual models, usually described in words and diagrams.

Because the deposit model usually focuses on the general characteristics of the geological environ-
ment at or near the deposits themselves, the conceptual model for favourability mapping is closer to
the “exploration” model (Sadeghi 2008). The deposit exploration model comprises all the deposit model
components that provide criteria for exploration and recognition of deposit indicators from data
derived from geological, geophysical and geochemical surveys.

A more detailed example of a conceptual model and prospectivity mapping on Bastnis type REE
mineralisation is given at the end of this chapter.

Key exploration criteria

Key exploration criteria for carbonatites

e Identifying and evaluating provinces with alkaline igneous rocks and known carbonatites is a
starting point. Carbonatites are primarily found in rift settings but also occur in orogenic belts,
such as those within the Qinling orogenic belt of central China.

e Potential geochemical indicators include fenitised wall rock and enrichment in LILE (particularly Ba).
Some elements anomalously enriched in carbonatites (P, Nb, REEs, Ti, U, and Th) may reside in
relatively resistant minerals, and regional heavy mineral stream-sediment surveys could help to
locate targets.

o Geophysical surveys may be useful to identify buried or concealed targets, and a variety of methods
(radiometric, magnetic, and gravimetric) can be used to find carbonatite systems. Slight to moderate
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enrichment in U and Th relative to host rocks are general characteristics of many carbonatite
systems and may be identified by ground or airborne radiometric surveys. Carbonatites may
contain radioactive minerals including monazite and pyrochlore, and thus give a positive radio-
metric signal.

Mineralisation in carbonatite complexes is often hosted by plugs, cone sheets, flows, dykes, and
sills instead of large homogeneous plutons. This feature requires more detailed local-scale explora-
tion methods, such as detailed airborne gravity, magnetic, electromagnetic, and geochemical
surveys.

Since the predominant carbonate minerals (calcite, dolomite) in some cases have greater densities
than quartz and feldspar, carbonatites may generate positive gravity anomalies. However, this will
largely depend on the densities of the country rocks.

Geochemical methods (soil, whole-rock, water, overbank sediments) can be used to identify (per)
alkaline rock anomalous in indicator elements, such as LREE, Rb, Sr, Ba, U, Th, and F.
Mapping of alteration zones can be a very efficient method for local-scale targeting.
Heavy-mineral indicator surveys. REE-bearing minerals, such as monazite, are commonly resistant
to weathering. Other heavy minerals, such as pyrochlore, perovskite, zirconolite, and apatite, are
associated with carbonatites.

In general, the best tools for discovering carbonatites may be a combination of aecromagnetic
measurements followed by closer-spaced magnetic studies, drilling and geochemical analysis of
the REE-enriched zone. An example of this approach is the targeting of carbonatite in Australia

(Dentith et al. 1994)

Key exploration criteria for REE deposits in alkaline/peralkaline rocks

e Tectonic environment: The deposits and their peralkaline host complexes typically occur in con-

tinental anorogenic tectonic settings and are associated with zones of rifting and/or faulting.

e Mineralogy: Peralkaline complexes, particularly those that are mineralised, may contain relati-
gy y Yy

vely rare but colourful indicator minerals. According to Richardson & Birkett (1996), these
potentially useful minerals include eudialyte (pink/red), sodalite (dark blue), aegirine (dark green),
riebeckite/arfvedsonite (dark bluish-green), and fluorite (purple).

o Geochemistry: Peralkaline rocks associated with REE mineralisation have anomalously high

concentrations of REE, Zr, Hf, Nb, Ta, Th, U, and F compared with most granitic rocks (Bowden
1985, Linnen & Cuney 2005). The elevated abundances of these elements typically contrast with
regional background concentrations (Richardson & Birkett 1996), and are useful reconnaissance
indicators of the mineralisation during geochemical surveys of stream sediments, residual soils,
and rocks (Richardson & Birkett 1996, Verplanck et al. 2014). Regional lake water surveys revea-
led that F, U, and Pb can be useful pathfinders for REE mineralisation (Richardson & Birkett
1996).

e Geophysics: Ground and airborne geophysical exploration methods are excellent exploration tools

for these deposits. The REE deposits are enriched in U and Th, and their inherent radioactivity
makes gamma-ray (radiometric) survey an effective exploration tool. In fact, many known REE
deposits/advanced exploration projects (e.g., in Greenland) were discovered during the search for
uranium deposits (Verplanck et al. 2014). Magnetic and gravity surveys can be used to locate
peralkaline intrusions; their anomalies do not reflect REE mineralisation but are typically pro-
duced by the magnetic and density characteristics of intrusions. Distinct magnetic and gravity
anomalies can delineate igneous bodies or tectonic lineaments. Detailed geophysical exploration
techniques (magnetic, radiometric, gravity, and aeromagnetic) can locate density, magnetic, and
conductivity contrasts generated by fluid flow.

e Mapping of alteration zones can be effective for local-scale targeting.
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Key exploration criteria for REE mineralisation in granitic pegmatite

Exploration for rare-element pegmatites has been conducted successfully based on current models for
pegmatite zonation and the signatures of chemical alteration around pegmatite bodies (London 2016).
A summary of key criteria for REE exploration in pegmatite are:

Regional zonation of pegmatite compositions (of the LCT family) with distance from source.
Chemistry of border zones: An explanation for the compositions of the border zones, which are
far from the bulk composition of the pegmatite-forming melt, yet commonly saturated in beryl,
apatite, tourmaline, garnet, and columbite, was presented as the “subsolidus isothermal fractional
crystallisation” concept by London (2014a, 2014b).

The compositions of pegmatitic micas and K-feldspar have been similarly used to assess the extent
of chemical fractionation in a pegmatitic body. Smeds (1992) augmented the existing databases
on trace-element content of pegmatitic muscovite by studying unmineralised (common) pegma-
tites as well as those proved to be rich in Li, Be, and Sn.

Exogenic chemical halos: Galeschuk & Vanstone (2005) suggested that a geochemical survey of soil
horizons may be a useful tool. They defined “combination anomalies,” i.e. positive concentration
anomalies directly above the body of the mineralised pegmatitic granite and on its flanks. Two of
the most geochemically mobile elements, Rb and Cs, form combination anomalies, along with
two of the most immobile elements, Re and Ti.

REE-bearing NYF-type pegmatites are subaluminous to metaluminous (rarely subalkaline). The
major element geochemistry of pegmatites can distinguish pegmatites as indicators of prospec-
tive REE deposits.

Most REE-bearing pegmatites are characterised by anomalous concentrations of uranium and
thorium and thus create positive radiometric anomalies, both when the pegmatites crop out and
when they are buried under a shallow cover. Fertile pegmatites are enriched in LREE, Nb, Ta, F,
P, Zr, and Li.

Geochemical surveys (soil, overbank, bedrock, stream sediments and water, and ground water)
can be an effective way of mapping prospective areas.

Key exploration criteria for REE mineralisations in skarn

Geophysical techniques (magnetic, gravity) which can map regional-scale and lower-order faults
that may have acted as fluid conduits.

Radiometric survey to map positive anomalies caused by anomalous concentrations of uranium
and thorium in these deposits.

Most skarn deposits are enriched in iron oxides (magnetite and hematite) and commonly have
positive magnetic and gravity anomalies.

Geochemical survey (bedrock, soil, and water) to map halo of dispersed elements (REE, P, F, U, Th).

Key exploration criteria for iron-oxide breccia complexes

Major deposits of this type are controlled by large regional-scale structures and lineaments, which
can be mapped using geophysical techniques (gravity, magnetic, seismic, magnetotelluric).
Most Olympic Dam-style deposits of this type are associated with A-type uranium-rich melts.
Major and minor element geochemistry of felsic rocks can identify prospective intrusive-volcanic
complexes.

e The presence of iron-rich (meta-) sedimentary rocks are a common feature of many mineralised

districts. Mapping of such rocks using geophysical techniques (magnetic and gravity) can
delineate regional-scale prospective targets.

e Mineral deposits of this type are known to have coincident, but offset gravity and magnetic anomalies.
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e Hydrothermal-mineralised systems associated with deposits are known to form extensive alteration
haloes.

e Since deposits of this type are often enriched in uranium and thorium, they form positive radio-
metric anomalies.

o Relatively large hydrothermal systems create haloes of dispersed elements around these deposits.
The haloes can be mapped by geochemical (bedrock, soil, stream sediments, stream, and ground
water) surveys.

Conceptual model for rare earth element exploration in Bergslagen

A conceptual model on REE mineralisation in Bergslagen is described in this section. Understanding
structures and relationship of different types of host rock and REE mineralisation is a key issue, so a
summary on detailed mapping carried out during the EURARE project of a few deposits in Bergslagen
focusing on REE mineralisation is presented.

Detailed bedrock mapping with focus of REE mineralisations in Bergslagen

In September 2015 three weeks were spent mapping the bedrock at and around some documented occur-
rences of REE-bearing minerals along the “REE line” (Jonsson & Hogdahl 2013) in Bergslagen, Sweden
(Fig. 97). From southwest to northeast along this line, these are predominantly iron mineralisations at
the Stora Rodbergsgruvan, Bastnisfiltet, Stora Malmkirragruvan, Johannagruvan and Ostanmossagruvan
deposits. Sampling at the Kusd Cu-Ni deposit was also performed during this period.

Figure 97. The approximate extent of the REE line on bedrock maps (scale 1:50 000) published by the Geological Survey of
Sweden and a background of the aeromagnetic anomaly map. The extent of each bedrock map is 25 x 25 kilometres,
north is up. R denotes Rédbergsgruvan, B —Bastnés, M — Malmkérra, Bo — Bojmossfaltet and O — Ostanmossa.
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Geology

The geology of the area at Stora Rédbergsgruvan is shown in Figure 98. The background in this
illustration is the bedrock map by Stephens (1998). The bedrock of the area predominantly comprises
intensely hydrothermally altered, mica-rich felsic metavolcanic rocks. In places, they carry cordierite
and anthophyllite. The precursors locally seem to have been heterogeneous at cm scale. On better
preserved outcrop surfaces, it may be seen that the heterogeneity may be due to both a volcanic breccia
origin and boudinage of bedding,.

Outcrops along the southeast shore of lake Fogdhyttetjirnen consist of a red, fine-grained, isotropic
granite to quartz monzonite. Metabasic rocks, probably dykes, as shown on the map by Stephens (1998),
occur in the area.

The predominant mesoscale structure is a moderately to shallowly plunging lineation trending east-
northeast. Locally, the lineation is an F2 axis along which an Sl foliation is folded or crenulated at cm
scale. Outcrops showing a crenulated foliation are presumably situated in F2 fold hinges, whereas
outcrops showing just one foliation occur in the limbs where the strikes of SO, S1 and S2 are largely
parallel. The F2 axial surfaces and S2 are apparently vertical. The S1 foliation is mica-dominated and
shows that hydrothermal alteration was pre- or syn-D1.

The present interpretation of the map scale structure of the area depicted in Figure 98 is a D2-folded
F1 syn- or anticline with its approximate centre line indicated by a broken blue line on the map. The
areal distribution of slightly more well-preserved rocks suggests that the structure is most likely a
syncline.

Pegmatite veins are parallel to the SI foliation.

Figure 98. The area around Stora Rodbergsgruvan. F denotes lake Fogdhyttetjarnen. The background bedrock map is by
Stephens (1998). The width of view is approximately 1.5 km, N is up. Red dots are observed outcrops and pits in this study.
The blue structural symbols and broken line are measurements and interpretation by this study.
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Figure 99. The geology of the Bastnds area. The background is the bedrock map by Ambros (1983). Red areas are mapped
outcrops and blue symbols are additional structural data from this study. C denotes cordierite-bearing. The view is
approximately 1.5 km wide. N is up.

The geology at Bastnis is shown in Figure 99, which is based on the map by Ambros (1983). The rocks
of the area predominantly comprise volcanic breccias that grade into volcanic siltstone. The latter is variably
hematite- and skarn-banded. The volcanic breccias are of two types, and appear to form an anticline west
of the mineralised strata at Bastnis. In the centre of the inferred anticline the breccia is a lithic clast
bearing volcanic sandstone. The clasts are scarce, cm-sized and consist mainly of volcanic sand- to siltstone.
Pumice-looking clasts, about 10 cm in diameter, occur in a few places. Overlying this unit is another breccia
of volcanic siltstone with abundant, pumice-looking clasts, about 10 cm in diameter. The breccias are
slightly to moderately mica-altered. The overlying volcanic siltstone formation is locally cordierite-bearing
in the lower parts, but grades upwards into the above-mentioned hematite- and skarn-bearing varieties.
The cordierite porphyroblasts appear to occur in D2-folded bands in some places, but in others seem to be
largely syn-D2. They may originally have been pre-D2 but then recrystallised during that phase.

The mineralised parts are approximately 200 m thick, south of and at the Gamla Bastnisfiltet mines
and grade from hematite-banded volcanic rock to skarn-banded hematite, in both cases the banding
is from mm to cm scale. No signs of original carbonate rocks can be seen in this part of the ore field.

As mentioned above, the predominant map scale structure is a north-dipping anticline (approximate
position marked by a broken line in Fig. 99). Mesoscale structures are steeply and predominantly
south-plunging lineations and northeast to north-northeast-striking bedding in the siltstone facies.

The geology at the Stora Malmkirra and Platingsgruvan mines is shown in Figure 100. The background
is the bedrock map by Ambros (1988). The rocks to the east of a mineralised (carbonate?) horizon (blue in
Fig. 100) are intensely and pervasively mica-altered and have a presumed volcanic origin. Locally, they are
cordierite-bearing. The mineralised horizon is green amphibole- and magnetite-altered and hosted by
skarn-bedded volcanic siltstone and, at Plitingsgruvan, skarn-altered quartz-phyric metarhyolite.

A reworked, volcanogenic breccia to conglomerate occurs west of the approximately 10-m-wide,
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Figure 100. The geology of the Malmtjarnen-Platangsgruvan area. The background is the bedrock map by Ambros (1988).
Red dots and lines (except those in the uppermost part of the map) denote outcrops investigated in this study. The arrow
denotes interpreted younging direction. Additional structural measurements in blue. Question marks west of carbonate
rock horizon (in blue) denote our interpretation that the rocks here are generally less mica-altered than those east of it.
The view is approximately 4.2 km wide. N is up.

mineralised horizon at Platingsgruvan mine. It is heterogeneously (slightly to moderately) mica-altered
and only locally altered to the same extent as the strata east of the mineralised horizon. In addition, it is
sparsely but penetratively magnetite-altered. The alteration pattern and possible grading in the beds suggest
that stratigraphic up is to the west. The rocks west of the mineralised horizon at Malmkirra are harder
to interpret, but volcanic siltstone, quartz-phyric metarhyolite and volcanic breccia all occur. Some
blasted outcrops, probably related to prospecting, are found west of lake Lilla Malmtjdrnen (Fig. 100).

The predominant tectonic structure is an S2 foliation, which is the axial plane in a tightly to isoclinally
folded mica foliation. This shows that mica alteration was syn-D1 at the latest.

The Johannagruvan mine, the Bojmossfiltet ore field and the C)stanmossagruvan mine are among
deposits occurring in and around the village of Norberg (Fig. 101). However, none of the pits at the
Johannagruvan or Ostamossa mines is readily accessible, and no outcrops are accessible either, so this
investigation concentrated on their surroundings instead.

Southwest of the Johannagruvan mine lies the Bojmossfiltet ore field (by “Karlberg” in Fig. 101). Here
the rocks are equigranular to sparsely quartz-phyric and biotite-altered felsic metavolcanic rock and volcanic
siltstone. The former rock may represent a volcanic sandstone facies (or a largely aphyric coherent facies).
The volcanic siltstone has banding of locally magnetite-bearing hematite. These bands have been mined in
places. According to Geijer (1936), the mineralisation at the Johannagruvan mine was hosted by skarn.

The Ostamossagruvan mine is situated west of the word “Asgruvan” in Figure 101. Similar hematite-
bearing (with some magnetite) volcanicsiltstones as in the Bojmossfiltet ore field occur west of the mine,
although here they are also skarn-bearing in places. According to Geijer (1936), the Ostanmossagruvan
mineralisation is hosted by skarn. Orange, medium-grained calcitic marble and fine-grained, magnetite-
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Figure 101. Geology of the Norberg area. The background is the bedrock map by Ambros (1988). Small, red dots denote
outcrops investigated in this study. Additional structural measurements in blue. The view is approximately 4.5 km wide.
N is up.

bearing skarn occur in dumps by the remains of the old railway track just west of the mine. Fold axes
in thisarea dip shallowly towards the north, and some of the repetition of mm- to 10-cm-wide mineralised
beds is due to tight folding along these axes. The northernmost outcrop visited shown in Figure 101 has
contact between volcanic siltstone and a red, quartz-phyric metavolcanic rock.

Aeromagnetic data

The acromagnetic anomaly map of the REE line area of Bergslagen is shown in Figure 102. The most
conspicuous feature on this map is the band of highly magnetic rocks that stretches from southwest
to northeast. It represents some of the variably magnetite-bearing mineralisations of the area. The white
circles in Figure 102 show the positions of the Rddbergsgruvan mine, the Bastnis ore field and the
deposits in Norberg as described above from southwest to northeast.

According to Stephens et al. (2009), the southwest—northeast trend shown by the magnetic data
(Fig. 102) is the general trend of S2 foliation in this part of Bergslagen. The magnetic anomaly pattern
is openly s-folded, suggestive of sinistral shearing in relation to the D2 deformational event. Some of
the known REE-bearing deposits appear to be localised at specific portions of these s-shaped kinks,
namely close to where the pattern turns more northerly going from southwest to northeast.

Some west-northwest—east-southeast-trending lineaments (marked by white broken lines) may be
interpreted from the magnetic anomaly map (Fig. 102). The Knutsbo deposit (marked K) lies along the
northernmost of these lineaments. The Knutsbo deposit is REE-bearing. The country rocks at Knutsbo
are intensely foliated to mylonitic with a trend parallel to that of the lineaments, which suggests that
the lineaments represent ductile shear zones.

In addition to their locations at kinks of the general S2-trend, the REE deposits at Bastnis and
Norberg are situated close to a west-northwest—east-southeast-trending lineament.
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Figure 102. Aeromagnetic anomaly map of the REE line area. White circles mark locations of known REE mineralisations.
Broken white lines mark interpreted lineaments. K marks the location of the Knutsbo REE deposit.

Interpretation
It is evident from the descriptions by Geijer & Magnusson (1944) of the REE-bearing mineralisations
mentioned above that almost all occur in close proximity to original banded iron formations (BIFs).
The BIFs were largely overprinted by hydrothermal processes that, to a varying extent, formed skarn
and reduced some of the original hematite to magnetite. However, some of the deposits are also
associated with skarn-altered carbonate rocks, and no BIF is evident in the Malmkirra-Platinggruvan
area. The country rocks of the REE line area were also intensely altered on a semi-regional scale.
Field observations suggest that the above hydrothermal alteration occurred before, or least
synchronously with, DI-deformation and the formation of S1. On the other hand, the spatial distribu-
tion of the REE mineralisations in relation to structures revealed by the acromagnetic data suggest
that their formation was somehow related to the phase of D2-deformation, or to processes coeval with
it, and was thus probably later than the phase of intense and semi-regional hydrothermal alteration.
However, since most REE mineralisations of this type in Bergslagen are found in this area, and less
so elsewhere, it seems likely that 1) the presence of BIFs and carbonate-skarn strata, 2) the phase of
intense and widespread hydrothermal alteration, and 3) processes at the time of D2 together were
somehow crucial to the formation of these REE mineralisations. The BIFs, with local skarns and car-
bonate rocks, may have served as trap rocks during any phase of alteration since their formation. The
phase of hydrothermal alteration may locally have led to initial LREE enrichment of the country rocks
as described elsewhere (e.g. MacLean 1988). Metamorphic to metasomatic processes during M2/D2
may have formed fluids that released the REEs from the country rocks and then precipitated them in
trap rocks at certain structurally favourable sites.
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Prospectivity mapping for REE mineralisation in Bergslagen

One of the major strengths of a GIS is the ability to integrate and combine multiple layers of geoscience
data. Once the data have been properly prepared, the GIS can be used in combination with other
statistical and geostatistical methods to manipulate and visualise them. One obvious geological
application for GIS is to produce mineral potential maps showing favourable areas for mineral explo-
ration (Carranza & Sadeghi 2010). There are two approaches to predictive prospectivity mapping: the
“mechanistic modelling approach” and the “empirical modelling approach”.

e Mechanistic approach: The mechanistic approach, also known as the “theoretical approach”, is
basically sub-divided into two kinds, namely deterministic and stochastic mechanistic modelling.
Both models use a mathematical approach, which in a mineral prospectivity mapping context
would show relationships and controls on ore-forming processes. A significant difference between
the two types of mechanistic approach is that the deterministic model does not consider random-
ness when working out the distribution of predictor variables in the target variables, whereas the
stochastic model does. In terms of results, the stochastic model produces a probability distribution
for the target variables, whereas the deterministic model produces a single estimate for them
(Caranza 2008).

e Empirical approach: An empirical model characterises or quantifies empirical relationships bet-
ween the target variables and a number of predictor variables. This model is particularly useful
for mapping prospectivity where the controls on the ore-forming processes are poorly or indi-
rectly known. There are two types of empirical model, namely quantitative and qualitative empi-
rical, and selecting the one to use to map mineral potential depends entirely on the amount of
data available. The quantitative empirical model is also known as a data-driven model. This is
because it requires ample data on both target and predictor variables to estimate their relationships
accurately. On the other hand, the qualitative empirical model, also termed a knowledge-driven
model, is most suitable when data are insufficient or lacking and where the relationships between
the target and predictor variables are generally determined on the basis of expert opinion (Car-
ranza, 2008; Carranza & Sadeghi 2010).

Key exploration criteria for REE mineralisations in Bergslagen

Bastnis-type rare earth element deposits are magnetite skarn-hosted silicate mineralisations that vari-
ably also contain Fe oxide-REE-Cu-(Co-Au-Bi-Mo). This mineralisation type occurs within an approx-
imately 100-km-long, discontinuous belt of mostly strongly altered, c. 1.90-1.87 Ga felsic metavolcanic
and meta-sedimentary rocks in the Nora—Riddarhyttan—Norberg area. The belt was called the “REE-
line” by Jonsson et al. (2013). The REE silicate-bearing mineralisations generally occur as seemingly
epigenetic, massive to disseminated magnetite-skarn replacements in dolomitic marbles (Holtstam
2004). Based on slight local differences in the chemistry and mineralogy of the deposits, Holtstam &
Andersson (2007) suggested a subdivision of the Bastnis-type deposits into two subtypes: those main-
ly enriched in LREE and Fe-rich silicates, and those enriched in LREE and HREE+Y together with
Mg, Ca and F (Holtstam & Andersson 2007).

Apatite-iron oxide deposits are another type of REE-bearing mineralisation in the Bergslagen region.
They have been classified as being of the Kiruna-type, since they show similarities to the type locality
at Kirunavaara in northern Sweden, in their geological features, host rock relationships, mineralogy,
geochemistry and geometry. The host rocks are mainly intermediate to felsic metavolcanic and meta-
subvolcanic rocks. Iron oxide-apatite mineralisations only occur in the west of Bergslagen, along an
approximately 40-km-long, southwest—northeast-trending zone from Gringesberg through Blétberget
to Idkerberget (Fig. 103).
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Figure 103. Simplified geological map and classified REE mineralisations in Sweden. The study area is marked by the black

rectangle. (Source: SGU, Mineral resources database)
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Methodology and Results

The present investigation demonstrates a technique to define favourable areas for REE mineralisation
associated with skarn in the Bergslagen region. Here, a weighted overlay technique has been used, and
favourable layers have been chosen based on a conceptual model focusing on a mineral system approach
using geological (including structures and alteration patterns), geochemical and geophysical factors
(Sadeghi et al. 2017b, Sadeghi 2017). A conceptual model for skarn-type REE mineralisation in
Bergslagen may be:

e Lithostratigraphic factor: Spatial association with felsic metavolcanic or subvolcanic rocks with
calc-alkaline affinity (1.9-1.87 Ga). The analysis shows that volcanic rocks with a skarn or limestone
contact and close proximity to banded iron formations should be expected to be favourable areas
(trap rocks) for REE mineralisation.

¢ Geochemical factor: Positive spatial association with higher concentrations of Fe, Mg and Y and
spatial association with P may be related to REE mineralisation.

¢ Geophysical factor: A one-dimensional scatter plot of geophysical values shows a positive spatial
association with high total magnetic intensity. The acromagnetic anomaly map of the REE line
part of Bergslagen shows a band of highly magnetic rocks stretching from southwest to northeast.
This band represents some of the variably magnetite-bearing mineralisations of the area.

e Alteration factor: Mineralisations occur in rocks showing K, Na and/or Mg alteration. Calculated
alteration index (AI) or chlorite-pyrite-plagioclase index (CCPI) are therefore good tools for detec-
ting regional alteration possibly related to mineralisation in the area. Rocks are either enriched or
depleted in K, Na and Mg. At the regional scale, mineralisations are generally associated with
BIFs and skarn-altered carbonate rocks.

e Heat source factor: Synvolcanic or intrusive rocks with ages of both ¢. 1.9-1.87 and c. 1.8 Ga may
act as engines driving hydrothermal fluids.

e Structural factors: According to Stephens et al. (2009), southwest—northeast is the general trend
of S2 foliation in this part of Bergslagen. The magnetic anomaly pattern is openly s-folded,
suggesting sinistral shearing in relation to the D2 deformational event. Some of the known REE-
bearing deposits appear to be located at specific points along these s-shaped kinks, namely close
to where the pattern turns more northerly going from southwest to northeast. On the other hand,
the spatial distribution of the REE mineralisations in relation to structures revealed by the aero-
magnetic data suggests that their formation was somehow related to the phase of D2-deformation,
or to processes coeval with it, and was thus probably later than the phase of intense and semi-
regional hydrothermal alteration.

A predictive target map for REE mineralisation based on the conceptual model and available data may
provide useful spatial information for exploration of skarn-hosted REE in the Bergslagen district and
is shown in Figure 104.

In summary, since most skarn-related REE mineralisations in Bergslagen are found in this area,
and less so elsewhere, it seems likely that: 1) the presence of BIFs, skarn and limestone, 2) the phase of
intense and wide-spread hydrothermal alteration, and 3) processes at the time of D2 together were
somehow crucial to the formation of REE mineralisations. The BIFs, with local skarns and carbonate
rocks, may have served as trap rocks during any phase of alteration since their formation. The phase
of hydrothermal alteration may locally have led to initial LREE enrichment of the country rocks as
described elsewhere (e.g. MacLean 1988). Metamorphic to metasomatic processes during M2/D2 may
have formed fluids that released the REEs from the country rocks and then precipitated them in trap
rocks at certain structurally favourable sites.
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Figure 104. Relative degree of prospectivity for skarn-hosted REE mineralisation in Bergslagen.

A conceptual model for Kiruna-type REE mineralisation in Bergslagen may be:

e Lithology: Dacite to rhyolite, and andesite are the known primary host rocks for the apatite-iron
ores. Intermediate-felsic metavolcanic rocks (1.90-1.87 Ga) are indicative of REE mineralisation.

e Mineralisation: Mainly hosted by magnetite-bearing ores (80%) and a minor component by
hematite-bearing ores (20%). Fluorapatite is known to be the most important mineral for the high
REE content in apatite-rich ores. The apatite-rich ore samples are those that have the highest ZREE
contents in this study.

¢ Geophysics: Positive gravimetrical anomaly, magnetic anomaly.

e Geochemistry: Positive spatial association with Cu and Zn anomalies.

Alteration: Enriched in Th, U, La, Ce, Nd, P, Fe, Sm, Tb, Y, Tm, and Yb and depleted in K, Ba,

St, Zr and Ti. Negative Eu anomalies and flat HREE patterns.

e Heat source: Magmatic and hydrothermal fluids. Subvolcanic rocks of an age similar to that of
the volcanic country rocks are probably the heat source.
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SUMMARY AND CONCLUSIONS

Martiya Sadeghi, Erik Jonsson & Nikolaos Arvanitidis

Elevated concentrations of REEs are generally found in association with alkaline igneous rocks, iron
oxide-apatite ores, iron oxide breccias, iron skarn rocks, granitic pegmatites and granitoids, phospho-
rites and carbonatites. REE mineralisations in Sweden are associated with igneous, sedimentary, meta-
morphic and metasomatic rocks in a wide range of geological environments.

Alkaline to peralkaline syenitic rocks and carbonatites are most commonly found in extensional
and riftsettings. Within these igneous systems, REEs can be concentrated into mineralisations through
magmatic differentiation processes and/or by hydrothermal as well as metamorphic activity during
and after emplacement of the intrusive rocks. In suitable climates, weathering of surficially exposed
rocks of these types may also lead to economically viable deposits. Even though such deposits may
once have formed here, they are unlikely to have been preserved in the extensively glaciated terrains
of the Fennoscandian Shield.

Although the overall most significant primary types of REE enrichment are associated with alkaline
igneous rocks and carbonatites, REE enrichment can be also found in association with hydrothermal
veins, breccias and carbonate replacement zones in a variety of sedimentary and metamorphic environ-
ments. These range from well-known, to uncertain origin and conditions of formation. In the case of
the “Kiruna-type” iron ores, it is clear that while the origin of the deposits as such is still debated, and
the actual REE host minerals and their evolution is being actively studied, these iron oxide-apatite
deposits may be utilised as a future source of both phosphorus and REEs as by-products, at least in
Sweden.

The genesis of the Bastnis iron skarn-type deposits has been debated over the years, and these depo-
sits are now generally interpreted as resulting from skarn-forming reactions between pre-existing
carbonate or volcanic rocks and medium to high-temperature, metal-rich hydrothermal fluids of a
magmatic nature. The source(s) of the REE and the reason for the high concentrations in the skarn
mineralisations in this specific linear belt of metavolcanic rocks remain open questions for future
investigation and research. Even though known very REE-rich deposits of this type (e.g. Nya Bastnis)
seem to have limited tonnages, this general type of skarn-hosted deposit occurs along a more than
100-km-long, narrow belt, known as “the REE line”. This suggests mineralising processes on a regional
scale, which also indicates potential for new discoveries.

Several REE mineralisations were discovered during the project, and these may be relevant for
future study, at least from a scientific perspective, but also in developing ore-genetic models and
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concepts to be applied elsewhere in the Bergslagen and other similar REE-metallogenetic settings.
These REE-enriched mineralisations are the Bredasen polymetallic iron oxide mineralisation, the
Sveafallen oxide mineralisation, the Tybble iron deposits, the Hylleled iron deposits, the Bickberg iron
deposits, and the Gullebo iron deposits. Other poorly investigated iron oxide deposits and area
s are also suggested for further study.

The Givle graben area seems to have potential for future exploration after what could be a relevant
apatite-REE-mineralised carbonatite occurrence. The topographically low, flat and wet terrain makes
both bedrock mapping and exploration work problematic; but this also makes it more credible that an
occurrence of an exotic rock such as carbonatite could have escaped attention.

In summary, it is evident that although Sweden currently has no active mining of REE, it does have
a number of regions with suitable geology and past geological processes, featuring recognised REE
resources. Several of these deposits are currently listed among the more advanced REE projects
globally. The Norra Kirr deposit has high proportions of HREE, is well situated and contains (very)
low grades of radioactive elements that are otherwise typically associated with such deposits
(http://tasmanmetals.se/projekt/). Another potential REE exploration target is the iron oxide-associ-
ated REE phosphate mineralisations of the Olserum area in southeastern Sweden. According to a
previous survey, the Olserum REE deposit covers only part of a broader mineralised area, and is open
at depth. For this limited part of the mineralised area, indicated resources have been estimated at
4.5 Mt at 0.6% TREO and 33.9% HREO (Reed 2013, unpublished report).

Considering the diverse and favourable geological and metallogenetic settings of Sweden, there is
good potential for discovering new REE deposits. This will naturally require more comprehensive and
advanced mineral exploration, including the development of conceptual models for deeper-seated REE
mineral systems. Applied geophysical and geochemical methods should also be integrated in a multi-
disciplinary way, to improve understanding of ore genesis and related geo-modelling. This holistic
approach, also including ore geochemistry and mineralogy, will provide a well-documented REE
mineral knowledge base and intelligence. There is a need for further joint research and innovation
actions in the fundamental understanding of the formation of REE mineralisations, geological model-
ling of the mineral deposits, ore-forming systems and exploration geochemistry, as well as in developing
new REE extraction and processing technologies.

Each ore body is ‘unique’, posing different geological, geochemical, mineralogical and metallurgical
challenges. The chain from exploration and discovery of a REE deposit to mining and production is
a challenging process, requiring new innovative technologies and expensive commitments. The REE
value chain is demanding, particularly as regards processing and metallurgical methods for REE
recovery and separation efficiency, along with related environmental issues.
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APPENDIX 2

Hyper spectral infrared imaging

Hyperspectral imaging, or imaging spectroscopy, combines the power of digital imaging and spectro-scopy. In col-
laboration with a drill core scanning project at SGU, samples from the EURARE project have been scanned for hyper
spectral imaging. More details on the drill core scanning project at SGU may be found on the SGU website (http://
www.sgu.se/en/mineral-resources/geological-information-for-mineral-exploration/drill-core-collection/drill-core-
scanning-at-sgu/).

Samples collected for the EURARE project were scanned. The scanner measures how visible and infrared light across
different wavelength ranges is reflected from the surface of the samples. The scanning captured visible and near-infrared
(VNIR), short-wavelength infrared (SWIR) and long-wavelength (LWIR) spectral images as well as a high-resolution
optical RGB image, all in a single scan, directly from the samples.

Our aim was to see whether it is possible to distinguish REE-bearing minerals from other rock-forming silicates/
oxides and compare the results with those from petrography and geochemistry studies on the samples. Theoretically,
REEs produce absorption bands in the visible spectral range. The intensity of the reflected light in different ranges is
measured using spectrometers. Different elements absorb the incoming light selectively at specific wavelengths, and
individual minerals may be identified by their spectral signature. Rare earth oxides usually show specific signatures in
VNIR and SWIR. Samples containing REE- bearing minerals can generally be distinguished within the VNIR spec-
trum, but mineralscontaining HREE present a different signature from samples with a higher concentration of LREE
(e.g. in xenotime).

The VNIR spectral range is largely free from interference from common rock-forming minerals (except iron oxides),
and REE mineralisations are typically mixtures predominantly made up of either LREE or HREE.

Selected images of hyper spectral infrared of the samples that contain REE mineralisation are shown in this appen-

dix (Figs. 1-7).
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Figure 1. Optical image of the samples, pictures are take in visible light.



Figure 2. Spectral indices
image of the samples in
Figure 1. The image is
complied by data from the
VNIR to SWIR, representing
AIOH H,0 indices which is
the ratio between wave-
length 1950nm and 2200nm,
and provides a simpler
means of evaluating bound
a Object: Sweden BHD scussppPLEST Box: 141 water content with alumi-
wwnlha  pterval 0. 11 Sensor: w-swir Type: A 120 nous phyllosilicates.

Figure 3. Spectral indices
image of the samples in
Figure 1. The image is
complied by data from the
Object: sweden BH: sousauprLEst Box: 141 VNIR to SWIR, representing
Interval: 0. 1/1Sensor: wi.5wiR Type: 01400 wavelength 1400nm.
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Figure 4. Spectral indices
image of the samples in
Figure 1. The image is
complied by data from the
VNIR to SWIR, representing
wavelength 2200nm.

Figure 5. Spectral indices
image of the samples in
Figure 1. The image is
complied by data from the
VNIR to SWIR, representing
Fe?Silicate indices which Is
the ratio between the
reflectance values at 1200
and 1600nm. Iron-bearing
minerals, including iron
oxides (but not magnetite),
iron carbonates (ankerite or
siderite) and ferromagnesian
minerals, have an absorption
between 800 and 1000nm.
Values >1reflect the
presence of iron-bearing
minerals, while values <1
reflect their absence.
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Figure 6. Spectral indices
image of the samplesin
Figure 1. The image is
complied by data from the
VNIR to SWIR, representing
FeOH-AIOH indices which is
record of the ratio between
the Fe?*-OH and Mg-OH
absorptions.

Figure 7. Spectral indices
image of the samples in
Figure 1. The image is
complied by data from the
VNIR to SWIR, representing
MgOH-AIOH indices which is
record of the ratio between
the AB*-OH and Mg-OH
absorptions.

Figure 8. Spectral indices
image of the samplesin
Figure 1. The image is
complied by data from the
VNIR to SWIR, representing
MgOH-FeOH indices which is
record of the ratio between
the Fe?*-OH and Mg-OH
absorptions.
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