Jordbruksåverkan på grundvatten – fördjupad analys av SGUs databaser

Lena Maxe

SGU-rapport 2015:13
Omslagsbild: Gammal brunn i Dalarna. Foto: Lena Maxe

Sveriges geologiska undersökning
Box 670, 751 28 Uppsala
tel: 018-179000
fax: 018-179210
e-post: sgu@sgu.se
www.sgu.se
INNEHÅLL

<table>
<thead>
<tr>
<th>Kapitel</th>
<th>Sida</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sammanfattning</td>
<td>5</td>
</tr>
<tr>
<td>Inledning</td>
<td>5</td>
</tr>
<tr>
<td>Mål</td>
<td>6</td>
</tr>
<tr>
<td>Bakgrund</td>
<td>6</td>
</tr>
<tr>
<td>SGUs databaser</td>
<td>6</td>
</tr>
<tr>
<td>- Vattentäktarsarkivet</td>
<td>6</td>
</tr>
<tr>
<td>- Miljöövervakning</td>
<td>7</td>
</tr>
<tr>
<td>- Kemiarkivet</td>
<td>8</td>
</tr>
<tr>
<td>Nitratläckage från jordbruksmark</td>
<td>9</td>
</tr>
<tr>
<td>Nitrat från enskilda avlopp</td>
<td>11</td>
</tr>
<tr>
<td>Grundvattenskydd och nitrat</td>
<td>12</td>
</tr>
<tr>
<td>- Vattenskyddsområde</td>
<td>12</td>
</tr>
<tr>
<td>- Grundvattenförekomster</td>
<td>13</td>
</tr>
<tr>
<td>- Nitratkänsliga områden</td>
<td>13</td>
</tr>
<tr>
<td>Nitrathalter i olika geologiska miljöer</td>
<td>15</td>
</tr>
<tr>
<td>Nitrat och avstånd till jordbruksmark</td>
<td>17</td>
</tr>
<tr>
<td>Nitrat och redox</td>
<td>17</td>
</tr>
<tr>
<td>- Redoxförhållanden – beroende av brunnsdjup och brunnstyp</td>
<td>19</td>
</tr>
<tr>
<td>- Redoxförhållanden – geografiska skillnader</td>
<td>20</td>
</tr>
<tr>
<td>- Halter av redoxämnen i morän</td>
<td>20</td>
</tr>
<tr>
<td>Trender i nitrathalt</td>
<td>22</td>
</tr>
<tr>
<td>Nitratalter i grundvattnet i Sverige</td>
<td>22</td>
</tr>
<tr>
<td>Diskussion</td>
<td>24</td>
</tr>
<tr>
<td>Referenser</td>
<td>27</td>
</tr>
</tbody>
</table>
SAMMANFATTNING
Sveriges grundvatten är på många håll påverkat av förhöjda nitrathalter. Den kvantitativt viktigaste källan är läckage från jordbruksmark men även t.ex. markinfiltation från enskilda avlopp bidrar till förhöjda halter. Jordbrukets bidrag har sannolikt minskat under de senaste decennierna genom att jordbruk har lagts ned och att ett medvetet arbete för att minska kväveförlusterna har bedrivits.

Eftersom påverkan från jordbruk och enskilda avlopp är lokal och olika områden dessutom är olika känsliga för nitratpåverkan kan utvecklingen skilja sig mycket även inom närliggande områden och på olika djup.

I detta projekt har en genomgång av nitratanalyser från tre olika grundvattenkemiska databaser genomförts. Analyserna har ställts i relation till markanvändning, jordartsförhållanden, brunntyp och grundvattenkemiska förhållanden. Resultatet från undersökningen visar att nitrathalterna uppvisar samband med dessa faktorer.

För en mer djupgående analys skulle det bl.a. behövas en bättre karakterisering av hur stor del av tillrinningen till uttagspunkten som kommer från jordbruksmark och hur stor del som kommer från andra markslag. Det finns också behov av karaktärisering av det geologiska materialets reduktionskapacitet.

INLEDNING
Jordbruk påverkar grundvattnet både ur kvalitets- och kvantitetssynpunkt. Olika aktiviteter som dränering, plöjning, djurhållning, tillförsel av gödningsämnen och bekämpningsmedel över stora arealer påverkar det underliggande grundvattnet. Vilken påverkan som uppstår beror, förutom på jordbrukets inriktning, på naturförutsättningar som klimat, jordartsförhållanden, grundvattenförhållanden och geokemiska förhållanden. Detta projekt har koncentrerats kring frågorna om kväveläckage och nitrathalter i grundvatten.

På SGU finns mycket data samlade om grundvattenkvalitet och jordartsgeologi. I detta projekt har information om grundvattenkvalitet ställts i relation till faktorer som akvifertyp, yttliga jordlagers genomsläpplighet, markanvändning, beräknat kväveläckage från odlad mark, nitratkänsliga områden och vattenskyddsområden.

Vattenkvalitetsdata finns från miljöövervakning, kommunala vattentäkter samt enskilda vattentäkter. De två första informationskällorna representerar i huvudsak områden utan påtaglig jordbrukspåverkan, medan de enskilda brunnarna i större utsträckning är belägna i jordbrukslandskapet. Markanvändningen i närheten av de olika provtagningsplatserna har översiktligt studerats vid några tillfällen, t.ex. i samband med fördjunade utvärderingar av miljökvalitetsmålet Grundvatten av god kvalitet. I detta projekt har en mer omfattande analys av markanvändningen utförts. Avstängd till åker eller betesmark har beräknats från Lantmäteriets Marktäckedata (Naturvårdsverket 2014) med hjälp av GIS-analys.

Projektet har till lika delar finansierats av Jordbruksverket och Sveriges geologiska undersökning (SGU dnr 000703-2013). Värdefulla synpunkter på rapporten har getts av Magnus Bång, Jordbruksverket samt Gustav Sundén och Lars Rodhe, SGU.
MÅL
Målet är att genom en genomgång och analys av SGUs databaser, information om markanvändning, geologi och kväveläckage skapa en bild av omfattningen av kväveläckage från jordbruk, vilka områden som är berörda och förändringar över tiden samt att beskriva osäkerhet och luckor i material och bedömning.

BAKGRUND
Kväve är i de flesta ekosystem ett bristämne under naturliga förhållanden. Tillgängligt kväve tas upp av växtligheten vilket leder till att halterna i markvattnet under rotozonen och i grundvattnet är låga. I jordbruksmark som gödslas är förhållanden annorlunda. En större mängd kväve är i omlopp jämfört med i de flesta naturliga ekosystem och en del av detta kväve kan lakas ut. Sandjordar är mer känsliga för utlakning än lerjordar. Kväve i form av nitratjoner är lättrörligt och när de väl passerat rotozonen kommer nitratjonerna fortsätta ner till grundvattnet. Detta innebär att nitrathalterna i grundvattnet blir höga.

I grundvattenzonen kan halterna av nitrat minska främst genom olika reduktionsprocesser (redoxprocesser) i syrefattig eller syrefri miljö, varvid kvävgas bildas. Dessa processer är sannolikt en starkt bidragande orsak till att nitrathalterna är låga i sandjordar. Andra orsaker kan vara att de är bättre skyddade av vättest och när kväve passerat rotozonen kommer nitratjonerna fortsätta ner till grundvattnet. Vid nitrathalter över 20 mg/l klassificeras dricksvatten som tjänligt med anmärkning vilket innebär att åtgärder bör vidtas. Åtminstone bör nitrathalterna undersökas och det bör fastställas om åtgärder behövs för att inte halterna ska öka ytterligare. Vid halter över 50 mg/l nitrat bedöms vattnet vara otjänligt som dricksvatten (Livsmedelsverket 2011, 2014). Denna nivå överskrider alldeles inför att nitrathalterna fortsätter ner till grundvattnet. Vid halter över 50 mg/l nitrat bedöms vattnet vara otjänligt som dricksvatten (Livsmedelsverket 2011, 2014).

I södra Sverige är luftdepositionen av kväve relativt hög men huvuddelen av detta kväve tas upp av vegetationen och innebär normalt inget problem för grundvattnet. Förutom jordbruk, inklusive djurhållning, kan kväve komma från gödsling av skogsmark eller (enskilda) avlopp.

I Danmark har man under många år arbetat med att kartlägga nitrathalterna i grundvattnet (Ernstsen m.fl. 2001). För att kunna bedöma reduktionskapaciteten har man också kartlagt den så kallade redoxgränsen, dvs. gränsen mellan oxiderede och reducerade jordlager (Videncentret for Landbrug 2012). Ovanför redoxgränsen är nitratjoner stabil och höga nitrathalter kan förekomma i grundvattnet medan nitrathalterna oftast är låga under redoxgränsen i samma område. Redoxgränsen ligger i Danmark på 1–5 m djup i lerjordar medan den i sandjordar normalt ligger betydligt djupare, 5–30 m under markytan (Knudsen 2012). Gränsen är fastställd utifrån analyser av halten av nitrat, pH och reduktionstider. Det kan också vara möjligt att skilja de olika typerna av jordlager med ledning av färger. Oxiderade sediment är gula, röda eller bruna medan reducerade är grå (Hansen & Thorling 2008).

SGUS DATABASER
I detta projekt har tre olika databaser vid SGU med uppgifter om grundvattenkvalitet använts.

Vattentäktsarkivet
I Vattentäktsarkivet samlas analysresultat och andra uppgifter från kommunala vattentäkter. En genomgång av de kommunala vattentäkternas råvattenanalyser har utförts. Analysen innehåller beskrivning av den typ av vatten kvalitet vilket det är evident att det är mycket stort material med drygt 200 000 analysprotokoll.

I figur 1–2 redovisas andelen kommunala vattentäckter där åtminstone en nitralanalys av råvatten finns tillgänglig för de olika decennierna. Andelen har beräknats med utgångspunkt från de kommunala vattentäckterna (1 978 stycken fördelat på 1 664 grundvattentäckter, 120 grundvattentäckter med konstgjord infiltration och 194 ytvattentäckter) som idag finns i Vattentäcktsarkivet vid SGU, utan hänsyn till att mindre förskjutningar i antalet vattentäckter har skett i och med att vattentäckter tillkommer respektive läggs ned. Man kan se att från 1990-talet (dvs. innan insamlingen kom igång) finns nitratanalyser från ca 24 % av vattentäckterna. Från 2000-talet är andelen betydligt större och nitratanalyser finns åtminstone från något tillfälle från 72 % av vattentäckterna medan det för 2010-talet hittills endast finns någon nitralanalys från 44 % av de vattentäckterna. Att det ännu finns så få analyser från 2010-talet visar att man vid många vattentäckter inte låter utföra nitralanalys varje år utan mer sällan.

För att undersöka om kommuner oftare tar nitratprov i vattentäckter i jordbruksområden visas andelen kommunala vattentäckter med analys uppdelat efter avstånd till närmsta jordbruksmark i figur 1. Åtminstone på 2010-talet förefaller nitralanalys något oftare ha gjorts vid vattentäckter i omedelbar anslutning till åkermark. I figur 2 visas analyserna från 2010-talet med uppdelning efter vattentäktstyp. I dessa figurer ingår således även ytvattentäckter.

I denna rapport kommer efter dessa figurer endast grundvattentäckter (inklusive grundvattentäckter med konstgjord infiltration) att redovisas.

Miljöövervakning

I denna rapport kommer efter dessa figurer endast grundvattentäckter (inklusive grundvattentäckter med konstgjord infiltration) att redovisas.
I denna redovisning har inte tagits hänsyn till syftet vid sammanställningarna utan det är den totala mängden analyser som lagrats hos SGU som finns med här. Ett fåtal av de stationer som ingår i den nationella miljöövervakningen provtas även inom den regionala miljöövervakningen.

Det framgår att många stationer ligger i omedelbar anslutning till eller inom jordbruksmark. Stationerna inom den nationella övervakningen tenderar dock att i större utsträckning ligga längre från jordbruksområden (fig. 3).

Kemiarkivet

De flesta provpunkterna har hämtats från Kemiarkivet vid SGU. Det innehåller i huvudsak analyser från enskilda vattentäkter, både bergborrade brunnar och brunnar i jordlager, samt även en del källor. Brunnarna har vanligtvis endast provtagnits vid ett tillfälle. I de fall flera prov
har tagits är det ändå svårt att fastställa att de verkligen kommer från en och samma brunn. Alla analysdata har därför behandlats som om de representerade olika mätplatser. Analyserna är av skiftande ålder och harrör från provtagningar utförda i samband med SGUs kartläggningsverksamhet, från försurnningsundersökningar, brunnsbörningar och från olika specialundersökningar. I samband med ett s.k. tillsynsprojekt inriktat på enskild vattenförsörjning som Socialstyrelsen genomförde 2007, i samarbete med SGU, har ett betydande antal analyser, med brunnsägarens tillstånd, tillförts SGU direkt från analyslaboratorierna. Insamlingen till Kemiarkivet har fortsatt även efter att tillsynsprojektet avslutades. Även om insamlingen fortfarande pågår har analyser av resursskäl inte hämtats till SGU för inlagring under de senaste åren. Därför finns inga nyare data än från 2009 (se figur 4).

I några fall har även decenniemedelvärden från miljöövervakning tagits med. Dessa utgör dock en mindre datamängd – ca 1 000 punkter, jämfört med materialet i Kemiarkivet som omfattar ca 28 000 nitratanalyser.

Av figurerna 4 och 5 framgår att huvuddelen av analyserna kommer från bergborrade brunnar. I Sverige är det vanligast med bergborrade brunns – ungefär två tredjedelar av hushåll med egen vattenförsörjning vid permanentbostad har bergborrad brunn (Maxe 2007). Till detta kommer att det i analysmaterialet också finns ett stort antal analyser från nyborrade brunnar i berg.

Av figur 5 framgår att det är vanligt med analyser från brunnar i eller nära åkermark. Det bör dock observeras att för många analyser har lägesbestämning gjorts utifrån fastighetsbeteckning vilket ger en ganska stor osäkerhet, speciellt vid stora fastigheter.

NITRATLÄCKAGE FRÅN JORDBRUKSMARK

En översiktlig beräkning av vilka nitrathalter i grundvattnet som kväveläckaget från jordbruksmark ger upphov till har gjorts genom att kombinera beräkningar från SMED (SvenskaMiljö EmissionsData) om kväveläckage från jordbruksmark (Blombäck m.fl. 2011) med uppgifter om avrinningen (fig. 6).

SMED anger värden för kvävebelastningen vid jordbruksmark per delavrinningsnivå. Dessa värden har räknats om med hjälp av uppgifter i SMED om arealen jordbruksmark i delavrinningsområdet samt med uppgifter om medelavrinnningen från varje delavrinningsområde. Avrinningen, dvs. den nederbörd som inte avdunstar eller tas upp av växterna, har sedan använts som ett ungefärligt mätt på grundvattenbildningen. Kväveläckaget har sedan beräknats genom att den mångd kväve som beräknats komma från jordbruksmark har delats med grundvatten-
bildningen vilket ger en medelhalt för all jordbruksmark inom delavrinningsområdet. I många jordbruksområden kommer en stor andel av nederbördsvattnet att direkt föras bort till ytvatten-drag genom ytvinnning på markytan eller genom dikessystem men för den andel som infiltrerar och bildar grundvatten representerar denna beräknade halt medelhalten i grundvatten om inte andra processer, såsom denitrifikation, är aktiva. För att underlätta jämförelser med uppmätta halter i grundvatten anges de beräknade medelhalterna som mg nitrat per liter.

I figur 6 syns att i en del områden, framför allt i Skåne, Gotland och Västra Götaland, är det beräknade medelläckaget från jordbruksmark större än 50 mg/l. Eftersom värdena som redovisas är medelvärden för all jordbruksmark inom delavrinningsområdet kan kväveläckaget från enskilda åkrar ge såväl mycket lägre som mycket högre nitralthalt i grundvattnet.

En jämförelse med uppmätta nitrathalter i enskilda brunnar redovisas i figur 7. I diagrammen har ingen hänsyn tagits till om brunnen verkligen ligger nära jordbruksmark. Det framgår att halterna i framt för allt brunnar i jordlagren trots detta visar en tydlig samvariation med det beräknade medelläckaget som redovisas i kartan i figur 6. Områden med hög beräknad nitrathalt i det nybildade grundvattnet i jordbruksmark är i regel också områden med stor andel jordbruksmark vilket kan bidra till samvariationen. Det är större sannolikhet att vattnet i en brunn i t.ex. Skåne kommer från jordbruksmark än att en brunn i t.ex. Norrbotten med genomgående lägre beräknat läckage i huvudsak får vatten från jordbruksmark. Det framgår också att mycket få analyser kommer från glesbebodda områden där läckaget från den jordbruksmark som finns...
beräknas vara litet. Ungefär hälften av analyserna kommer från de gula områdena på kartan. Inom de gula områdena har omkring hälften av analyserna från brunnarna i jordlager nitrathalter över 2 mg/l vilket kan betraktas som en bakgrundsnivå.

NITRAT FRÅN ENSKILDA AVLOPP

Avloppsvatten innehåller mycket kväve, ca 14 gram kväve per person och dygn (Havs- och vattenmyndigheten 2013). Dette innebär att infiltrationsanläggningar för enskilda avlopp och läckande avloppsledningar kan medföra höga kvävehalter i grundvattnet. Om vattenförbrukningen per person och dygn är 160 liter ger detta en halt i avloppsvattnet på N-tot på 90 mg/l.

Mycket av detta kväve föreligger i organiskt bunden form eller som ammonium och en hel del denitrifieras sannolikt snabbt i den syrefattiga miljö som byggs upp i avloppsanläggningar
men om allt skulle finnas som nitrat skulle halten i avloppsvattnet bli cirka 400 mg/l nitrat. Hur stor reduktion av kväve som uppnås i olika avloppsanläggningar är oklart. I de föreslagna nya föreskrifterna för enskilda avlopp krävs minst 30 % reduktion (Havs- och vattenmyndigheten 2013).

Avloppsanläggningar får inte läggas så att de förorenar dricksvattenbrunnar. Det är dock inte ovanligt att framför allt grävda brunnar är bakteriellt förorenade, sannolikt oftast av avloppsvatten men även andra källor som djur och stallgödselhantering kan förekomma. Förhoppningsvis är det endast en mindre del av avloppsvattnet som når en dricksvattenbrunn och det innebär att det späds ut med rent grundvatten.

GRUNDVATTENSKYDD OCH NITRAT

Vattendragets område

Vattendragets område finns vid ca 65 % av de kommunala grundvattentäkterna. I figur 8 redovisas nitratalens fördelningen i kommunala grundvattentäkter med eller utan vattendragets områden. För en del vattendäck, saknas uppgift om vattendäckens, har ett fastställt vattendragets område. Av figuren framgår att för några av vattendäckerna med påtaglig nitratpåverkan är vattendragets områdena tydligt inte haft någon avgörande effekt. Detta skulle förutom otill-
räckliga restriktioner även kunna bero på att vattenskyddsområdet är nytt och att omsättnings-
tiden i grundvattenmagasinet är relativt lång. Detta har dock inte undersöks vidare.

Grundvattenförekomster

Nitratkänsliga områden

Nitratdirektivet (Rådets direktiv 91/676/EEG om skydd mot att vatten förorenas av nitrater från jordbruket) syftar till att minska jordbrukets påverkan av nitrater på yt- och grundvatten. För grundvatten gäller att nitrathalten inte får överstiga eller riskera att överstiga 50 mg/l. För att uppfylla nitratdirektivets krav har Sverige avgränsat s.k. nitratkänsliga områden. Dessa har revierats vid ett flertal tillfällen. I figur 9 visas de områden som för närvarande gäller.

Till skillnad från grundvattendirektivet, som främst gäller de större grundvattenförekomsterna, gäller nitratdirektivet allt grundvatten i de områden som avgränsats som nitratkänsliga.

Det är få kommunala grundvattentäkter som har nitrathalter som innebär att vattnet är tämligt med anmärkning eller otjänligt som dricksvatten. Eftersom det är svårt att behandla vatten för att ta bort nitrat har kommunala vattentäkter med höga halter ofta i stället tagits ur drift. De få som finns kvar visar dock på att åtgärder för att minska belastningen ännu inte har haft tillräcklig effekt. Några av vattentäkterna med påtagliga nitratproblem ligger utanför det avgränsade nitratkänsliga området (fig. 10).

Som nämndes gäller nitratdirektivet inte bara de stora kommunala vattentäkterna utan även annat grundvatten. I figur 11 visas resultat från miljöövervakningen. För miljöövervakningsstationerna är det tydligt att nitratpåverkan är större i de nitratkänsliga områdena än utanför. De flesta av övervakningsspuntarna representerar jordakviferer som i sig är mer känsliga för nitratpåverkan än djupare liggande berggrundvatten.

Figur 11. Nitrathalter i grundvattnet vid stationer för miljöövervakning i respektive utanför de nitratkänsliga områdena. Data från nationell och regional miljöövervakning.
Till skillnad från i de kommunala vattentäkterna och i resultaten från miljöövervakningen ses knappt någon skillnad i nitrathalt för grundvatten från enskilda brunnar inom och utanför de nitratkänsliga områdena. Nitrathalterna är med undantag för de allra högsta halterna, ungefär lika höga i som utanför de nitratkänsliga områdena (fig. 12).

NITRATHALTER I OLICA GEOLOGISKA MILJÖER

Nitratläckage från jordbruksmark är generellt större i sandiga jordar än i lerjordar. Detta mönster framträder dock inte tydligt när jordarten vid brunnens eller miljöövervakningsstationen jämförs med nitrathalten i grundvatten. Förutom att nitrathalterna i allmänhet är lägre i områden med tunna jordlager så är inga tydliga skillnader uppenbara vid denna grova jämförelse. Detta kan sannolikt delvis bero på att i det ofta småbrunta landskapet är de geologiska förhållanden omväxlande och kan vid provplatsen skilja från de i tillrinningsområdet. De lägre halt-\(\text{erna i områden med tunna jordarter beror sannolikt på att dessa områden, ofta höjdområden, domineras av skogsmark, se figur 13.}\)

Figur 13, som bygger på SGUs jordartskartläggning, visar jordartsförhållandena på cirka 50 cm djup, dvs. under den zon som är direkt påverkad av markprocesser. För att få ett bättre undelag för b.l.a. modellering av växt näringsförlopp har Jordbruksverket 2014 nyligen samlat och kartlagt de Äldre markanalyserna och även kartlagt markområdena i Sveriges åkermark (Jordbruksverket). Resultatet finns tillgängligt som kartfiler med en upplösning på 1 x 1 km²-rutor (se fig. 14).

I figur 15 visas nitrathalten i grundvattnet vid olika lerhalt i matjorden. I såväl jordgrundvattnet som i berggrundvattnet är höga nitrathalter vanligare vid relativt låga lerhalter (upp till 10 %) i matjorden. Vid lerhalter däröver och upp till ca 33 % är halterna något lägre men förefaller sedan öka igen vid ytterligare högre lerhalt. Det är oklart vad detta beror på men möjliga förklaringar kan vara skillnader i odlingsinriktning på de styvare lerjordarna eller att sprick-
Nitrathalt i brunnar vid olika lerhalt i den odlade marken. Data från Kemiarkivet samt nationell och regional miljöövervakning.

Nitrathalt och avstånd till jordbruksmark
I figur 16 redovisas nitrathalterna utifrån avstånd till åkermark. Det är egentligen oklart i vilken utsträckning de olika provtagningspunkterna påverkas av närheten till jordbruksmark eftersom ingen utvärdering av grundvattnets strömningsriktning gjorts. Även provtagningspunkter i omedelbar närhet av åkermark kan få grundvatten från t.ex. ett skogsområde där nitrathalten är låg. Att närhet till jordbruksmark spelar roll framgår dock i figur 16, i synnerhet för brunnar i jordlagren.

Nitrathalt och redox

I figur 17 visas redoxberoendet för nitrat. Av figuren framgår att förhöjda nitralthalter främst förekommer i redoxklass 1 och 2 (dvs. i aeroba vatten) samt i blandvatten. Blandvatten är definierat som grundvatten som inte är i redosjämníkt. Detta beror ofta på att vatten med olika redoxstatus blandas i brunnen. Man kan också se att även om nitralthalterna generellt är lägre i berggrundvatten följer de samma mönster. Redoxklass 4, som kännnetecknas av mycket låga redoxnivåer (där sulfat kan omvandlas till sulfid), är ovanligt i vatten som används som dricksvatten och där grundvattnet därmed omsätts. I figur 17 visas även hur kväveföreningarna nitrit (en intermediär som inte är stabil i grundvatten) och ammonium är beroende av redoxförhål-

landena. Även fosfats redoxberoende visas. Fosfat går i lösning vid anaeroba förhållanden och det är tydligt att riktigt höga halter framför allt förekommer vid redoxklass 4 då fosfat genom olika processer kan frigöras från jordlager och berggrund. De generellt något högre halterna i jordgrundvatten än i berggrundvatten vid andra redoxnivåer kan eventuellt vara betingade av tillförsel genom gödsling av åkermark eller avloppspåverkan.

Redoxförhållanden – beroende av brunnsdjup och brunnstyp

Redoxpotentialen sjunker generellt med djupet eftersom tillgängligt syre och nitrat, om det finns tillgängligt, går åt för att bryta ned (oxidera) organiskt material. I figur 18 visas fördelningen med brunnsdjupet. Man kan se att under ett djup på 25 m är fördelningen mellan de olika redoxklasserna ganska konstant. I diagrammet finns även en redovisning med uppdelning på brunnstyp.

Redoxpotentialen kan också förmodas vara lägre i vatten med långsam omsättning och under täta jordlager. I figur 19 kan man se att detta till viss grad stämmer. I såväl bergborrade brunnar som i brunnar i jord är det vanligare med redoxklass 3 eller 4 i områden med torvmark.

![Figur 18. Redoxförhållanden vid olika brunnsdjup (övre delen av diagrammet) respektive brunnstyp (nedre delen av diagrammet). Data från Kemiarkivet samt nationell och regional miljöövervakning.](image1)

![Figur 19. Redoxförhållanden vid olika jordarter. Den övre delen visar brunnar i jordlager (oftast grävda brunnar eller källor) och den undre delen visar brunnar i berg. Data från Kemiarkivet samt nationell och regional miljöövervakning.](image2)
eller i sjönära lägen, men skillnaderna är inte stora. I brunnar i jordlagren är mer oxidering förhållanden (redoxklass 1 eller 2) särskilt ofta förekommande i morän respektive sand- och grusområden. Däremot verkar inte förekomst av leriga jordarter ge lägre redoxpotential, åtminstone inte i denna grova jämförelse.

Tabell 1. Redoxstatus i grundvatten i jord- respektive bergbrunnar. Data från Kemiarkivet och miljöövervakningen. Redovisningen är uppdeld på grundvattenkemisk region enligt Bedömningsgrunder för grundvatten (SGU 2013).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Brunnar i jord</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. Sydsveriges sedimentära berggrunds- område</td>
<td>51,5</td>
<td>8,5</td>
<td>23,5</td>
<td>2,1</td>
<td>14,4</td>
<td>520</td>
</tr>
<tr>
<td>B. Sydsvenska höglandet</td>
<td>45,1</td>
<td>9,9</td>
<td>21,6</td>
<td>1,3</td>
<td>22,1</td>
<td>2446</td>
</tr>
<tr>
<td>C. Väst- och sydostkusten</td>
<td>34,9</td>
<td>8,7</td>
<td>26,8</td>
<td>0,9</td>
<td>28,7</td>
<td>1054</td>
</tr>
<tr>
<td>D. Mellansveriges sedimentära berg- grundsområde</td>
<td>53,2</td>
<td>6,5</td>
<td>23,1</td>
<td>1,1</td>
<td>16,1</td>
<td>186</td>
</tr>
<tr>
<td>E. Mellansvenska sänkan</td>
<td>33,8</td>
<td>7,9</td>
<td>26,0</td>
<td>2,7</td>
<td>29,6</td>
<td>1397</td>
</tr>
<tr>
<td>F. Upplands kalkpåverkade område</td>
<td>48,3</td>
<td>4,5</td>
<td>21,9</td>
<td>0,6</td>
<td>24,6</td>
<td>484</td>
</tr>
<tr>
<td>G. Norrlandskusten</td>
<td>48,1</td>
<td>2,3</td>
<td>16,5</td>
<td>1,1</td>
<td>32,0</td>
<td>1041</td>
</tr>
<tr>
<td>H. Sedimentära berggrundsområden i Dalarna och Jämtland</td>
<td>67,2</td>
<td>1,6</td>
<td>4,9</td>
<td>0,0</td>
<td>26,2</td>
<td>61</td>
</tr>
<tr>
<td>I. Urbergusområden inom norrlands- terrängen ovanför HK</td>
<td>45,5</td>
<td>8,6</td>
<td>14,1</td>
<td>1,7</td>
<td>30,1</td>
<td>771</td>
</tr>
<tr>
<td>J. Norra delarna av fjällkedjan</td>
<td>67,9</td>
<td>0,0</td>
<td>10,7</td>
<td>0,0</td>
<td>21,4</td>
<td>28</td>
</tr>
<tr>
<td>Jordbrunnar totalt</td>
<td>43,3</td>
<td>7,7</td>
<td>21,7</td>
<td>1,5</td>
<td>25,9</td>
<td>7988</td>
</tr>
<tr>
<td>Bergborrade brunnar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. Sydsveriges sedimentära berggrunds- område</td>
<td>24,9</td>
<td>5,8</td>
<td>26,1</td>
<td>3,9</td>
<td>39,3</td>
<td>899</td>
</tr>
<tr>
<td>B. Sydsvenska höglandet</td>
<td>21,2</td>
<td>16,5</td>
<td>42,7</td>
<td>2,3</td>
<td>17,2</td>
<td>2412</td>
</tr>
<tr>
<td>C. Väst- och sydostkusten</td>
<td>20,7</td>
<td>13,5</td>
<td>43,8</td>
<td>0,6</td>
<td>21,4</td>
<td>1438</td>
</tr>
<tr>
<td>D. Mellansveriges sedimentära berg- grundsområde</td>
<td>7,7</td>
<td>7,3</td>
<td>35,6</td>
<td>1,5</td>
<td>47,8</td>
<td>531</td>
</tr>
<tr>
<td>E. Mellansvenska sänkan</td>
<td>20,4</td>
<td>14,0</td>
<td>39,8</td>
<td>2,2</td>
<td>23,7</td>
<td>4559</td>
</tr>
<tr>
<td>F. Upplands kalkpåverkade område</td>
<td>28,9</td>
<td>13,8</td>
<td>38,3</td>
<td>0,6</td>
<td>18,4</td>
<td>4105</td>
</tr>
<tr>
<td>G. Norrlandskusten</td>
<td>17,4</td>
<td>9,3</td>
<td>43,2</td>
<td>2,9</td>
<td>27,2</td>
<td>2356</td>
</tr>
<tr>
<td>H. Sedimentära berggrundsområden i Dalarna och Jämtland</td>
<td>35,8</td>
<td>12,6</td>
<td>23,6</td>
<td>2,4</td>
<td>25,6</td>
<td>254</td>
</tr>
<tr>
<td>I. Urbergusområden inom norrlands- terrängen ovanför HK</td>
<td>27,2</td>
<td>13,3</td>
<td>28,7</td>
<td>4,8</td>
<td>26,0</td>
<td>857</td>
</tr>
<tr>
<td>J. Norra delarna av fjällkedjan</td>
<td>20,6</td>
<td>5,9</td>
<td>52,9</td>
<td>0,0</td>
<td>20,6</td>
<td>34</td>
</tr>
<tr>
<td>Bergborrade totalt</td>
<td>22,5</td>
<td>12,9</td>
<td>39,0</td>
<td>2,0</td>
<td>23,5</td>
<td>17445</td>
</tr>
</tbody>
</table>

Redoxförhållanden – geografiska skillnader

I tabell 1 har provpunkterna delats upp efter grundvattenkemisk region (jämför Bedömningsgrunder för grundvatten, SGU 2013). Även om brunnar med hög respektive låg redoxpotential kan förekomma sida vid sida verkar de ganska fåtaliga brunnarna med anaeroba vatten vara koncentrerade till vissa områden, t.ex. sydvästra Skåne.

Halter av redoxämnen i morän

Som visats är redox en viktig faktor för halten nitrat i brunnsvatten. Nitrat i grundvatten kan reduceras till kväv gas under syrefattiga förhållanden som uppstår när organiskt material bryts.

Om järnsulfid (pyrit) finns närvarande i jordlager och bergrund kan detta starkt bidra till reduktion av nitrat till kvävgas (Appelo & Postma 1994). I figur 20 visas halterna av järn, mangan och svavel i morän från SGUs moränprovtagning i kombination med redoxstatus i det provtagna grundvattnet från samma område. Moränprovtagningen ger en generell bild av halterna i morän som till stor del beror på bergrundens sammansättning i området. De värden som avvänt är interpolerade och endast de brunnsvattenprov för vilka en moränprovtagningspunkt finns inom 5 km har tagits med (hela landet är ännu inte kartlagt). Järn, mangan och svavel (sulfat) är de ämnen i grundvattnet som redoxklassificeringen bygger på (SGU 2013). Klassificeringssystemet för redox valdes ju ursprungligen just för att dessa ämnen normalt finns tillgängliga och att halten i lösning därför kan användas för att indikera redoxstatus i grundvatten. Detta demonstreras av de ganska obetydliga skillnaderna i halterna i moränen för dessa ämnen vid de olika redoxklasserna.

Eftersom moränprovtagningen ger totalhalter av de olika ämnena är det inte möjligt att veta om järn och svavel föreligger som pyrit eller i en oxidierad form som inte kan reducera nitrat till kvävgas. Det är bara möjligt att konstatera att totalhalterna visar på en god tillgänglighet i de provtagna områdena.
För att se om det finns några långsiktiga förändringar i nitrathalt i grundvattnet har analyserna från Kemiarkivet använts (se figur 21). Brunnarna i Kemiarkivet har vanligtvis endast provtagits vid ett tillfälle. Rent faktiskt har förhållandena i grundvatten förmodligen inte förändrats så mycket eftersom processerna i grundvatten generellt är långsamma. De relativt stora skillnader i nitrathalt mellan olika decennier beror sannolikt delvis på att vattenprov kommer från olika delar av landet under olika decennier på grund av olika fokus för inventeringar och kartläggnings etc. Om man jämför de två decennierna med relativt många nitratanalyser, 1980-talet och 2000-talet, med varandra framgår att en viss förbättring skett, både för brunnar i jordlagren och bergborrade brunnar.

Inför en revidering av nitratkänsliga områden har en genomgång av eventuella trender i grundvattendata från miljöövervakningen genomförts (Johansson & Bång 2014). Den studerade tidsperioden var 2003–2012. Resultaten visar inte på någon entydig utveckling; vid 64,5 % av stationerna var eventuella trender i nitrathalt inte statistiskt signifikanta medan de vid 19,8 % var signifikant minskande och vid 15,7 % var signifikant ökande. Signifikant minskande trender var något vanligare vid låga nitrathalter och kan därmed eventuellt förklaras med en avtagande kvävedeposition i områden utan lokal kvävepåverkan, medan de få stationerna med förhöjda nitrathalter sällan uppvisade någon signifikant nitrattrend.

TRENDER I NITRATHALT

NITRATHALTER I GRUNDVATTNET I SVERIGE

Den regionala fördelningen av nitrathalter i grundvattnet i enskilda brunnar framgår av figur 22. I figuren presenteras nitrathalterna i grundvatten uppdelat efter redoxstatus i aerobic grundvatten (redoxklass 1 och 2) samt anaeroba vatten (redoxklass 3 och 4). Man kan se att höga nitrathalter generellt förekommer oftare i södra Sverige och främst under oxiderande förhållan-

Jordgrundvatten

Oxiderande förhållanden
- Nitrathalt (mg/l)
 - <2
 - 2–5
 - 5–20
 - 20–40
 - 40–50
 - >50

Berggrundvatten

Oxiderande förhållanden
- Nitrathalt (mg/l)
 - <2 mg/l
 - 2–5
 - 5–20
 - 20–40
 - 40–50
 - >50

Reducerande förhållanden
- Nitrathalt (mg/l)
 - <2 mg/l
 - 2–5
 - 5–20
 - 20–40
 - 40–50
 - >50
den. Även för bergborrade brunnar är skillnaderna mellan oxiderande och reducerande förhållanden märkbar (fig. 22).

DISKUSSION
I denna genomgång har olika datakällor på SGU använts för att försöka beskriva förhållandena vad avser nitrat i grundvatten.

Nitrat i grundvatten är ett stort problem på många håll i Europa och även i Sverige förekommer för höga halter i grundvatten. De olika datakällor som finns tillgängliga är inte utformade för att följa upp nitrathalten i grundvatten. Nitratillförseln, och därmed även halterna i grundvattnet, kan variera från åker till åker och dessutom kan halten även variera med djupet under markytan.

Sammantaget finns det behov av mer information om nitrathalterna i grundvattnet med en god rumslig upplösning och som även representerar förhållandena på olika djup. Att följa utvecklingen i de större (kommunala och större enskilda) vattentäkterna är lämpligt men kan ge en för positiv bild, dels eftersom dessa vattentäkter ofta skyddas av vattenskyddsområden, dels ofta läggs ned om vattenkvaliteten är dålig. Det är därför också lämpligt att följa utvecklingen i de enskilda vattentäkterna (privata brunnar) i jordbrukslandskapet. Det är i dessa vattentäkter de största problemen finns.

Dricksvattenförsörjning är en del av det svenska miljökvalitetsmålet Grundvatten av god kvalitet:

Grundvattenet ska ge en säker och hållbar dricksvattenförsörjning samt bidra till en god livsmiljö för växter och djur i sjöar och vattendrag.

Detta har senare omformulerats i en av de sex preciseringar av miljökvalitetsmålet som beslutats av regeringen:

Grundvattenet är med få undantag av sådan kvalitet att det inte begränsar användningen av grundvatten för allmän eller enskild dricksvattenförsörjning.

SGUs tolkar denna formulering som att de allra flesta grundvatten ska kunna användas utan föregående rening från föroreningar. Det finns emellertid också en rad naturligt förekommande ämnen som kan medföra att vattnet blir otjänligt. I den målmanual (SGU 2014) som tagits fram har SGU därför formulerat två förtydliganden om vattenkvaliteten:
Förtydligande 1: Kvaliteten på grundvatten som används eller kan komma att användas som allmänt dricksvatten är känd. Mänsklig påverkan bidrar inte till att gränsvärden och riktvärden överskrids.

Förtydligande 2: Kvaliteten på grundvatten som används som enskilt dricksvatten är känd för en majoritet av Sveriges enskilda vattentäkter och vid dessa bidrar inte mänsklig påverkan till att gränsvärden och riktvärden överskrids.

Bågge dessa förtydliganden kan tillämpas på nitratförtoeningar. Förtydligandena stödjer också de krav som ställs i vattendirektivet och nitratdirektivet.

För att kunna följa utvecklingen krävs ökad uppföljning av nitrathalten i grundvatten. Den miljöövervakning av näringsläckage från jordbruksmark som bedrivs av SLU på uppdrag av Naturvårdsverket är viktig för att mer detaljerat kunna studera inverkan av olika faktorer. Denna övervakning skulle behöva förstärkas med bl.a. parametrar för att redoxklassa grundvattenaanalyserna. För att ge en rättvisande bild av utvecklingen behövs dock betydligt fler provpunkter. Detta kan delvis uppnås inom övrig nationell och regional miljöövervakning av grundvatten, men huvuddelen måste, bl.a. av resursskäl, utföras som en del av egenkontrollen vid vattenverk och jordbruksföretag. För att direkt kunna användas för att följa upp miljökvalitetsmålets preciseringar bör företrädesvis vattentäkter (kommunala, större enskilda och privata brunnar) kontrolleras. Det kan också finnas anledning att kontrollera vattenkvaliteten i brunnar som kan påverkas av avloppsanläggningar.

För att kunna dra slutsatser om nitratbelastning och nitraturutveckling i grundvattnet krävs att även redoxförhållanden är kända. I områden med reducerande förhållanden i grundvatten kan mer nitrat tillföras utan att halterna i grundvattenet ökar eftersom nitrat då kan gå bort genom redoxprocesser, främst denitrifikation. Vid genomgången av markkemiska data från SGU var det svårt att bedöma reduktionskapaciteten i marklagren eftersom oxidationsstatus för de olika grundämnen inte bestämts. I Danmark kartläggs djupet till den s.k. redoxgränsen genom att halten organiskt material och pyrit bestäms vid borningar. En motsvarande kartläggning i Sverige skulle kunna ge bättre besked om vilka grundvatten som är känsliga för nitratförtoening. Om mark och berggrund innehåller betydande mängder av organiskt material eller pyrit kan det räcka för att reducera nitrat under lång tid.

Av figur 17 framgår att nitrathalterna genomgående är mycket låga i anaeroba grundvatten i redoxklass 4. I redoxklass 3 med svagt anaeroba vatten är i allmänhet nitrathalterna också låga, men undantag förekommer, vilket även framgår av kartorna i figur 22. Eftersom det är ovanligt
med brunnsvatten i redoxklass 4 (knapp 2 % av brunnarna) medan det är relativt vanligt med brunnsvatten i redoxklass 3 (drygt 30 % av brunnarna) kommer kartor med den sammanslagna klassen av reducerande förhållanden i huvudsak visa nitralhalten i redoxklass 3. För att bättre beskriva förutsättningarna för förekomst av nitrat och andra kväveföreningar i grundvattnen finns behov av en mer förfinad redoxindelning av redoxklass 3.

Förutom att förhöjda nitralhalter medför begränsningar i användningen av grundvattnet för dricksvattenändamål bidrar förorenat grundvatten även till eutrofiering av ytvatten. Det är svårt att kvantifiera denna påverkan men det kan nämnas att generellt brukar man räkna med att ca 4/5 av vattnet i sjöar och vattendrag kommit dit via grundvattnen. För odlade områden kan denna andel vara längre beroende på skillnader i markavvattning, terrängläge och markens genomsnittsläpplighet. Dikade jordar och jordar med låg genomsnittsläpplighet kan leda till direkta avrivning till ytvatten genom (täck)diken respektive till ytvädring ovanpå diken eller bäckar. I områden där nederbörd och snömältning istället infiltrerar och så småningom tillförs grundvattnet kan man räkna med att uppehållstiden i mark och grundvatten delvis kommer att kunna vara relativt lång. Detta innebär att det kan ta lång tid innan åtgärder inom jordbruket resulterar i minskade halter i grundvattnet eller i anknutna ytvattensystem.

REFERENSER

Havs- och vattenmyndigheten, 2013a: Styrmedar för en hållbar åtgärdstakt av små avloppsanläggningar. Slutrappportering av regeringsuppdrag enskilda avlopp, 96 s.

