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PREFACE

In 804 Hisinger & Berzelius published their discovery of the element cerium, isolated from cerite 
specimens recovered from the Bastnäs deposit, Västmanland county, Sweden. To celebrate the 200-year 
anniversary of this important contribution to science, the Mineralogical Society of Sweden (Svenska 
Mineralogiska Sällskapet, SMS) arranged a minisymposium with the theme: “CER200 – Rare earth 
elements in minerals” on September 24, 2004. The symposium was held at Swedish Museum of Natural 
History and was attended by scientists from eight countries. Following the symposium, on September 
25–26, an excursion to the Norberg and Riddarhyttan ore fields in Västmanland county was arranged 
by the Society, in order to show the Bastnäs-type REE deposits and their geological settings. Sixteen 
participants joined the excursion that was led by the contributors to this volume. This compilation is 
an outgrowth of the informal guidebook that was prepared for the excursion and is intended to present 
an up-to-date review on these remarkable mineralisations, and their geological context. We wish to 
thank the Geological Survey of Sweden for the opportunity to publish this material in Rapporter och 
meddelanden.

Ulf B. Andersson    Jaana Hode Vuorinen
SMS, head organizer    SMS, chairman

FOREWORD

At a time when exploration for base- and precious metals in Sweden prosper and new copper, zinc and 
gold mines are put into production, it can be appropriate to remind about other, more exotic metals 
and minerals that are found and have been mined in Sweden. Among those are the rare earth element 
(REE) deposits with cerium as the most common element.

The Swedish REE mines have been closed for a long time but the increasing demand for REE by 
modern optic and electronic technology can make these deposits economically significant again in 
the future.

The REE deposits also have an interesting history in that many of the REEs were first discovered 
in minerals from Swedish deposits, and later named after Scandinavian chemists or deposits. For 
example, the elements yttrium, ytterbium, erbium, and terbium are all named after the Ytterby mine, 
whereas the Bastnäs mine has given name to one of the most important REE-minerals, bastnäsite.

In the present volume, the history of the discovery of the most common rare earth element, ce-
rium, is described and several geological and mineralogical aspects of the REEs are discussed. The 
excursion guide to the Bastnäs-type REE mineralisations in north-western Bergslagen provides the 
geological background and detailed descriptions and guides to some of the most famous REE deposits 
in Sweden.

The Geological Survey of Sweden regards this volume as an important contribution to the knowl-
edge of Swedish mineral deposits.

Anders Hallberg, SGU
Project leader, ore documentation
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THE BASTNÄS-TYPE REE-MINERALISATIONS IN NORTH-WESTERN BERGSLAGEN, 
SWEDEN – A SUMMARY WITH GEOLOGICAL BACKGROUND AND EXCURSION 
GUIDE

Edited by U.B. Andersson
with contributions by D. Holtstam, I. Lundström, U.B. Andersson, J. Langhof, and P. Nysten

REGIONAL OVERVIEW 
U.B. Andersson

The Fennoscandian Shield

The Fennoscandian Shield (Fig. ) comprises an Archaean nucleus in its north-eastern part to which 
Proterozoic terranes have been successively accreted along the southern and western flanks (e.g. Gaál 
& Gorbatschev 987). The post-Archaean development started by periods of rifting of the craton in-
terior and margin between 2.45 and 2.0 Ga (e.g. Park et al. 984, Gaál & Gorbatschev 987, Nironen 
997). This was followed by the formation of juvenile crust at 2.–.93 Ga in several arc systems around 
the craton in the south-west resulting in ‘microcontinents’ in certain areas, including the Bergslagen 
area (e.g. Nironen 997, Nironen et al. 2002, Lahtinen et al. 2004). This earliest ‘proto-Svecofennian’ 
development (Andersson et al. 2004a) is documented by only a few preserved outcropping rocks, 
none of which have been found in Bergslagen (e.g. Wasström 993, 996, Skiöld et al. 993, Lahtinen 
& Huhma 997, and references therein), but by abundant old, >.9 Ga, detrital zircons found in as-
sociated metasedimentary rocks (Claesson et al. 993, Lahtinen et al. 2002, Andersson et al. 2004b, 
Sultan et al. 2004). The main early Svecofennian rock-forming phase (.9–.86 Ga) resulted in a 
thorough reworking, partly including rift-related volcanism, of the early arc systems in addition to 
major formation of juvenile crust in areas between the microcontinents, and the final accretion of 
this complicated collage to the craton margin at about .86 Ga (e.g. Vivallo & Claesson 987, Baker 
et al. 988, Lagerblad 988, Vivallo & Willdén 988, Gaál 990, Allen et al. 996, Nironen 997). After 
completed accretion, subsequent east- and northward subduction resulted in pervasive reworking of 
the newly formed crust during the late Svecofennian (c. .85–.75 Ga). This reworking resulted in the 
voluminous Transscandinavian Igneous Belt (TIB) along the south-west margin, as well as pene-
contemporaneous, mainly granitoid magmatism and regional metamorphism further towards the 
continent, e.g. in Bergslagen (Patchett et al. 987, Andersson 99, Andersson et al. 2004c).

Bergslagen

The Bergslagen area (Fig. 2) constitutes the south-western part of the southern Svecofennian prov-
ince (SSP) (Gaál & Gorbatschev 987) and comprises a volcano-metallogenetic district rich in miner-
alisations of several types. These include banded iron formation (BIF), apatite-iron oxide, skarn-iron, 
and specialised Mn-Fe (e.g. the famous Långban deposit), as well as massive sulphide, and W-Mo 
deposits (summarized in Frietsch 986). Mining activities have been documented back almost a 
millenium in certain places. The SSP ore belt extends eastwards into southern Finland and the Ori-
järvi district (e.g. Gaál 990). Its northern and western areas are dominated by volcanic formations, 
whereas sedimentary successions of the Sörmland basin dominate in the south-east (e.g. Stålhös 
99, Allen et al. 996, Romer & Öhlander 995). The rocks of the Sörmland basin have recently 
been interpreted to be an accretionary prism (Korja & Heikkinen 2000). In the north-east, early 
Svecofennian intrusions dominate, e.g. the Uppland batholith (Fig. 2). Crystallization ages of rocks 
belonging to the early Svecofennian magmatic phase in Bergslagen are generally between .9 and 
.86 Ga (e.g. Welin 987, Kumpulainen et al. 996, Lundström et al. 998, Persson & Persson 999, 
and references therein). The Bergslagen volcano-plutonic complexes have been interpreted as formed 
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in a rifted, mature (continental) arc setting (Oen et al. 982, Vivallo & Claesson 987, Baker et al. 
988, Lagerblad 988, Vivallo & Willdén 988, Gaál 990, Allen et al. 996). The metamorphic grade 
(Rickard 988, Stålhös 99) is high (upper amphibolite facies) in southern Bergslagen, including 
the Sörmland basin, where paragneisses characteristically are sillimanite-bearing. Locally, in the 
vicinity of TIB-intrusions, granulite facies (600–900 °C and 3–6 kbar) is attained (Andersson et 
al. 992, Wiktröm & Larsson 993, Andersson 997a, Sjöström & Bergman 998). A gradual shift 
into lower–middle amphibolite facies conditions is observed towards northern Bergslagen, where 
paragneisses are characteristically andalusite-bearing (c. <600 °C and 2–4 kbar; Stålhös 99, Ripa 
994, Sjöström & Bergman 998), with a minor area of greenschist facies rocks in the north-west 
(Fig. 2; e.g. Lundström 995). A relatively abrupt change in metamorphic conditions to higher (upper 
amphibolite facies) grade occurs in northernmost Bergslagen and southern Norrland (Stålhös 99, 
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Fig. 1. Lithological subdivision of the Fennoscandian 
Shield. APPB is the Archaean–Proterozoic palaeo-
boundary of Öhlander et al. (1993). Modified from 
Andersson (1997b) and Gaál & Gorbatschev (1987).
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Sjöström & Bergman 998). The age of metamorphism in Bergslagen has traditionally been consid-
ered to be late Svecofennian, 845–780 Ma, but relatively few direct age determinations exist (Romer 
& Öhlander 994, 995, Andersson 997a, Andersson et al. 2004a). This metamorphism was also 
considered to be related to the same tectono-magmatic heat flow event that caused the coeval late 
Svecofennian and TIB magmatism (Öhlander & Romer 996, Andersson 997a), possibly imparted 
by mafic underplating (Andersson 99, Sjöström & Bergman 998, Wikström & Andersson 2004). 
Recent findings, however, have emphasized a more widespread preservation of an early metamorphic 
phase (c. .89–.86 Ga) in northern Bergslagen (Andersson et al. 2000, 2004b, Bergman et al. 2004, 
Hermansson et al. 2004).

DEPOSITIONAL HISTORY, STRATIGRAPHY, ORE TYPES,  
AND ALTERATIONS IN BERGSLAGEN 
I. Lundström

The Bergslagen mining region is the westernmost and most intensely mineralised part of a Palaeopro-
terozoic supracrustal belt, which extends from south-central Sweden to southern Finland (Lundström 
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& Papunen 986, Gaál 990). It contains thousands of iron and base-metal sulphide deposits but, at 
present, only two Zn(-Pb) ore-fields (Zinkgruvan and Garpenberg) are still in operation.

Most sulphide and iron ores occur in distal, subaqeous, rhyolitic metavolcanic ash-siltstones that 
are mostly situated in the upper part of the metavolcanic pile. The ores have been interpreted to be 
either syngenetic, stratiform, ash–siltstone-hosted Zn-Pb ores or stratabound, volcanic-associated, 
limestone-skarn-hosted Zn-Pb impregnation ores (Allen et al. 996, 2003). The latter are commonly 
associated with extensive footwall alteration and probably related to nearby subvolcanic intrusions. 

Proximal, felsic pyroclastic rocks, their rapidly redeposited equivalents and subvolcanic intrusions 
characterize the lower part of the volcanic pile (Allen et al. 996). The pyroclastic rocks are mainly 
pumice and glass-rich ash-flow deposits erupted from large calderas. In some places, these deposits are 
interbedded with mature, deltaic continent-derived metasandstones, containing Palaeoproterozoic to 
Archean detrital zircons (e.g. Kumpulainen et al. 996, and references therein). Evidence for an older, 
felsic, continental basement thus exists in the lower part of the metavolcanic stratigraphy. Although 
this basement does not outcrop, its existence is corroborated by geochemical and isotope data. Instead, 
the metavolcanic rocks are locally found to rest upon turbiditic metasedimentary rocks, at least in the 
eastern part of Bergslagen (e.g. Allen et al. 996, and references therein).

The explosive character, abundant accretionary lapilli and other depositional features suggest that 
the volcanic rocks initially were erupted and deposited in shallow water to subaerial conditions. 
With time, the depositional basin subsided, probably due to an extensional tectonic regime. Thus, 
deep-water environments became successively more frequent, and distal, frequently planar-bedded, 
metavolcanic ash-siltstones terminate the metavolcanic part of the stratigraphy (Allen et al. 996). The 
supracrustal sequence is completed by planar-bedded, turbiditic mudstones. Hence, the metavolcanic 
rocks appear to be interlayered between turbiditic metasedimentary rocks, thus indicating a volcanic 
episode that more or less overprinted the ambient sedimentation. The metavolcanic rocks yield U-Pb 
(zircon) ages around 880–900 Ma (e.g. Lundström et al. 998, and references therein). The tectonic 
setting of the area has been interpreted as a subsiding continental platform or margin, possibly in a 
continental back arc setting (Allen et al. 996).

Differentiated, I-type granitoids (stops 5 and 6) intruded the supracrustal sequence and this assem-
blage was later folded and altered by low pressure metamorphism under low- to high-grade conditions. 
This deformation and metamorphism was associated with the Svecokarelian orogeny, and peaked 
after about 850–840 Ma (Andersson 997a). The orogenic activity was accompanied and followed by 
the emplacement of numerous 840 to 750 Ma old S- to A-type granites (stop 7), some of which are 
associated particularly with tungsten and molybdenum mineralisations (Sundblad & Bergman 996, 
Öhlander & Romer 996, and references therein), as well as 820 to 785 Ma old (Romer & Smeds 
994, 997) pegmatites (stops 4 and 8).

Metasomatic, mostly syndepositional, hydrothermal alterations occurred in large areas in Bergs-
lagen, where they are thought to be related to much of the metallogeny (e.g. Lagerblad & Gorbatschev 
985, Allen et al. 2003.) The regional distribution of the various alteration types is mostly diffuse and 
therefore left unexplained, although stratigraphic controls have conventionally been invoked for the 
distribution of Na- and K-alterations (e.g. Frietsch 982a). Where the overprint of regional deforma-
tion and metamorphism is weak enough, a zoned, concentric alteration pattern, centred on metabasite 
dikes, may locally be discerned. 

Several alteration types are recognized (see e.g. Hallberg 2003):
1. Na-K-metasomatism has occurred in most of the metavolcanic rocks (Fig. 3, stop ). Likewise, 

many synvolcanic and shallow, early orogenic intrusions (stop 6) have been affected by Na-metaso-
matism (cf. Baker 985). This type of metasomatism is manifested by albite- or microcline-rich, alkali-
extreme rock compositions. Compared to K-metasomatism, Na-metasomatism appears to have been 
favoured by stratigraphic depth or proximity to heat sources, such as intrusions. Na-metasomatism 
generally seems to have postdated K-metasomatism, possibly as a consequence of rising geotherms 
due to nearby intrusions (e.g. Lundström 995, Hallberg 2003).
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2. Mg-metasomatism (cf. Baker & de Groot, 983) locally affected the same rocks that were 
previously alkali-metasomatized (stops 2, 4 and 0), and is now recognized in quartz-, muscovite-, 
and phlogopite-rich rocks (Hallberg 2003) that are feldspar-free. In the low-grade, Mg-altered areas, 
chlorite is common, but in the high-grade areas, chlorite was replaced by biotite, phlogopite, and 
cordierite (Fig. 4; Trägårdh 99). In thoroughly Mg-altered areas, anthophyllite-gedrite blastesis is 
not uncommon (Fig. 5; stop 4). In many places, Mg-metasomatic alteration is seen to have started 
along fractures in the precursor rock and seems to have been favoured by high water/rock ratios (e.g. 
Lundström 995).

3. Actinolite-tremolite blastesis is regionally common in carbonate rocks, but occurs also en-
veloping metabasite dykes in both metavolcanic and early orogenic, intrusive rocks (e.g. Lundström 
995). In close vicinity to the metabasite dykes, this blastesis grades into spectacular actinolite veins 
and blebs, which locally are associated with magnetite or pyrrhotite growth. For more details see Allen 
et al. (996) and references therein.

LOCAL GEOLOGY OF THE NORA–RIDDARHYTTAN–NORBERG AREA 
I. Lundström

The Nora–Riddarhyttan–Norberg area forms an approximately 80 km long, north-east to south-west 
trending lens of supracrustal rocks (Fig. 6). It is surrounded by intrusive rocks on its eastern side, and 
intrusive and supracrustal rocks on its western side. The south-western part of the area consists of the 
Guldsmedshyttan syncline, which is situated more or less along strike from the Riddarhyttan area. 
The rocks of the Guldsmedshyttan syncline have a higher metamorphic grade, but are stratigraphic 
equivalents to the rocks that outcrop in the well preserved key area at Grythyttan, further west. As in 
Grythyttan, a Na-rich, alkali-rhyolitic, partly quartz-keratophyric sequence of massive, metavolcanic 

Fig. 3. Felsic metavolcanic rock: metatuff with skarn layers, 
possibly alkali-metasomatized. Roadcut at Viken, Klackberg 
(see stop 1). Photo: Dan Holtstam.

Fig. 4. Porphyroblasts of cordierite in Mg-enriched mica-
schist (altered felsic metavolcanic rock). Roadcut along road 
68 at Högfallsåsen (see stop 4). Width of photograph ap-
proximately 25 cm. Photo: Per Nysten.
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rocks forms the lowermost unit. In the Guldsmedshyttan syncline, corresponding rocks are called 
the Vassland formation (Lundström 983). A K-rich, alkali-rhyolitic unit, dominated by metavolcanic 
ash–siltstones (the Usken formation), makes up the upper parts of the volcanogenic pile. The Usken 
formation becomes increasingly sedimentary stratigraphically upwards. Overlying the metavolcanic 
units, metasedimentary, andalusite-bearing mica-schists, stratigraphically corresponding to the well-
known Grythyttan slate, occur. Locally, as on the eastern limb of the Guldsmedshyttan syncline, 
this sequence was replaced by the partly intrusive Storsjön formation, consisting of plagioclase-phyric 
dacites to quartz-andesites. For details, see Lundström (983).

Due to structural complications, this stratigraphy is difficult to recognize in the Riddarhyttan–
Norberg area, at least in detail. Extensive, synvolcanic, metasomatic alterations have furthermore 
obscured much of the volcanic and sedimentary details in the Riddarhyttan–Norberg area. Hence, 
the stratigraphic position and many depositional features remain largely unknown here. However, in 
the Norberg area, quartzitic metasandstones clearly stratigraphically underlie the metavolcanic rocks 
(Ambros 983a, 988), thus indicating a low stratigraphic position for this part of the metavolcanic pile. 
According to Stephens et al. (999), there is also evidence that the nearby greywackes of the Larsbo 
formation underlie the metavolcanic part of the stratigraphic pile.

The Guldsmedshyttan syncline is folded along flat-lying, approximately north–south-trending fold 
axes, formed during an early folding phase (Lundström 983). Good “way-up” determinations, as well 
as gravimetric studies and observations from the geology of the numerous mines of the area, demon-
strate that the stratigraphic sequence is comparable to the better preserved sequence in the Grythyttan 
syncline. The synclinal structure and stratigraphy of the Guldsmedshyttan area is, however, difficult 
to trace further into the Riddarhyttan area, possibly due to a significant structural break in the latter 
area, as reported by Stephens et al. (999).

Evidence of all the synvolcanic, hydrothermal alteration types listed above, is common in the 
Nora–Riddarhyttan–Norberg area. However, particularly in the Riddarhyttan-Norberg subarea, Mg-
metasomatic phenomena are extremely pervasive (stops 2, 4 and 0). As pointed out by Geijer (96), 
the famous REE occurrences (stops 3, 9 and 0) are all located within these extensively Mg-altered 
rocks. Because Geijer (96) related Mg-alteration to the early, differentiated, I-type granitoids, he also 
thought that the REE mineralizations were due to them. However, with the current understanding 
of the Mg-metasomatism as synvolcanic, the regional coincidence of the REE mineralisations within 
areas of Mg-altered rocks (see maps in Geijer 923, 936, or Frietsch 982b) is not yet fully understood. 

Fig. 5. Radiating, metamorphic 
Mg-amphiboles (gedrite-antho-
phyllite) in mafic layer within 
mica-schist (Mg-altered, felsic 
metavolcanic rock). Roadcut 
along road 68 at Högfallsåsen 
(see, stop 4). Width of photo-
graph approximately 30 cm. 
Photo: Per Nysten.
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Although much of the primary lithological detail of the area has been destroyed, Trägårdh (988) 
managed to identify on geochemical grounds Mg-metasomatites with different alteration histories 
and precursors.

As in the rest of Bergslagen, regional metamorphism of low-pressure type affected also the Nora–
Riddarhyttan–Norberg area some 50–00 Ma after the deposition of the supracrustal rocks, see 
above. 

THE BASTNÄS-TYPE REE DEPOSITS 
D. Holtstam

Riddarhyttan area (subtype 1)

In the Riddarhyttan ore field (Riddarhytte malmfält in Swedish), Skinnskatteberg district (Fig. 7), 
the oldest bedrock is dominated by Palaeoproterozoic felsic metavolcanic rocks, but metacarbonate 
layers of varying thicknesses are rather common (Geijer 923, Ambros 983b). Numerous iron oxide 
and base metal sulphide deposits are hosted by the supracrustal units. The metavolcanic rocks were 

Fig. 6. Geological map covering the area with Bastnäs-type 
deposits, based on maps published by the Geological Survey 
of Sweden. R = Rödbergsgruvan, B = Bastnäs field. Malmkärra, 
Johannagruvan, S. Hackspikgruvan, and Östanmossa are 
situated around the town of Norberg.
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locally hydrothermally and metasomatically modified during the early, volcanic stage (cf. stops 2 and 
4) and later became metamorphosed under amphibolite-facies conditions. The major iron ore hori-
zons are stratiform and some of them are thought to be of volcano-sedimentary origin (cf. stop 4), 
deposited during quiet periods in the volcanic activity (Ambros 983b). The above units were intruded 
by two generations of granitoids. The older suite ranges from tonalite to granite in composition and 
is normally foliated (cf. stops 5 and 6), whereas the younger one comprises essentially undeformed 
granites sensu stricto (cf. stop 7).

A few REE mineralisations (e.g. Högfors, Bastnäs) are known from the Riddarhyttan ore field, 
where they coexist with Fe ore, as replacements of dolomitic marble lenses. Allanite (sensu lato) 
and cerite-(Ce), found in association with amphibole skarns, are the chief REE hosts here (Fig. 8,  
Table ).

Riddarhyttan

Bastnäs

SkinnskattebergStop 2

Stop 3

Stop 4

Stop 5

Stop 6

Stop 7

Stop 8Högfors

GodkärraHögfallsåsen

Älgtorp

Källfallet

20 km

Metavolcanic rock with skarns

Mica "quartzite" Granite, massive

Granodiorite, deformed

Quartz porphyry Granite, deformed Pegmatite

Fault

Fig. 7. Geological map of the Riddarhyttan area (after Ambros 1983b).
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Nya Bastnäs

At the Nya Bastnäs deposit (stop 3), situated 4 km north-east of the village Riddarhyttan, quartz-
banded hematite ore occurs in proximity with a magnetite-skarn ore, the latter replacing a carbon-
ate (mainly dolomitic) horizon. The dominant country rock is a metasomatized volcanic rock: a 
quartz-rich, commonly cordierite-bearing mica-schist (stops 2 and 4). The cerite ore was worked in 
two shallow mines, Ceritgruvan and Sankt Göransgruvan, where it formed restricted zones (up to 
0.6 m thick) composed mainly of cerite-(Ce), tremolitic amphibole, ferriallanite-(Ce), bastnäsite-
(Ce), törnebohmite-(Ce) and talc (Geijer 92; Holtstam et al. 2003a). The ore-bearing zone in total, 
including the hematite and magnetite ores, has an average width of approximately 8 m and can be 
traced some 400 m along the surface. In the deepest mine, Stora Bastnäsgruvan, Fe ores were still 
encountered at 4 m depth (Geijer & Magnusson 944).

Sulphide minerals, dominantly chalcopyrite, bismuthinite and molybdenite, are closely associated 
with the REE minerals, and usually interstitial to them. Minor opaque phases detected are carrollite, 
bornite, covellite, wittichenite, emplectite, hodrushite, tetradymite, kupcikite, native copper and bis-
muth. Uraninite is locally found within blebs of asphalt (solidified hydrocarbons). Gold-silver alloys 
(40–60% Au) occur as rare microscopic grains in association with the sulphides (Holtstam & Ensterö 
2002, Ensterö 2003). Lanthanite-(Ce) and various hydrated copper sulphates (of which some might 
be post-mining formations) are the latest formed minerals at Nya Bastnäs.

Although originally worked as a copper and iron deposit, about 60 metric tons of REE ore (mainly 
cerite) produced from Nya Bastnäs was sold over the period 860–99 (Carlborg 923). The cerite ores 
ended at 20–30 m depth. The mine dumps have been used as source of Ce, La etc. after the abandon-
ment. The common types of ore and skarn rocks are still available on the dumps. Cerite ore can be 
seen in situ where a horizontal adit (Nya Bastnässtollen, made in 922) intersects with the ore.

REE mineral assemblages 

Cerite-(Ce) is translucent with a reddish to gray colour and the luster is resinous. Individual crystals 
are usually small and anhedral, but they may form aggregates up to 20 cm across. The mineral is com-
monly associated with bastnäsite-(Ce) and ferriallanite-(Ce). Cerite was first described from Bastnäs 
by Hisinger & Berzelius (804a,b).

Fig. 8. A specimen with 
cerite-(Ce) as massive, red-
dish gray layers up to 3 cm 
wide, in contact with black 
ferriallanite-(Ce) and greenish 
white, fibrous actinolite. From 
the mine Sankt Göransgruvan, 
Bastnäs. Now in the mineral 
collection of Naturhistoriska 
riksmuseet, catalogue no. 
LK4838. Photo: Dan Holtstam.



16

Ferriallanite-(Ce) from Bastnäs was observed long before its true nature was established. Early desig-
nations like “schwarzen Wolfram” and “cerine” were superseded by “allanite” in the late 9th century. 
Recent electron-microprobe analyses have shown that representative samples of “allanite” correspond 
to ferriallanite-(Ce) in their composition (Holtstam et al. 2003a).

Coarse-grained ferriallanite-(Ce) in some cases forms up to 2 cm long euhedral crystals with 
bastnäsite-(Ce)–bastnäsite-(La), quartz, and sulphide minerals. The crystals are commonly twinned 
on {00}. Rounded aggregates of fine-grained cerite-(Ce) with lesser amounts of bastnäsite-(Ce) are 
commonly surrounded by margins of anhedral, irregular ferriallanite-(Ce) grains. The general im-
pression is that ferriallanite-(Ce) has replaced cerite-(Ce) in these assemblages (cf. Fig. 8, Holtstam 
& Andersson 2002).

Törnebohmite-(Ce) and an unnamed, gatelite-related mineral species (the Fe3+-O analogue of 
västmanlandite, cf. below), c. (Ce,La)3CaAl2(Fe,Mg)2[Si2O7][SiO4]3(O,F)(OH)2, are commonly close-
ly associated with the ferriallanite-(Ce).

Bastnäsite-(Ce) is quite common as a fine-grained material associated with cerite-(Ce), of which 
it may be an alteration product. Larger, homogeneous aggregates of this yellowish mineral (or the 
La-dominant analogue) are locally found with ferriallanite-(Ce), quartz and sulphide minerals. Indi-
vidual crystals are platy and may reach a length of several centimetres. Bastnäsite was first described 
from the locality, under the name “basiskt fluor-cerium”, by Hisinger (838).

Törnebohmite-(Ce) is less common than ferriallanite-(Ce) but has a similar paragenetic position. It 
forms irregular green grains. Törnebohmite was first described from Bastnäs by Geijer (92).

Gadolinite-(Ce) has been observed only in one thin section and is probably rare.

Fluocerite-(Ce), commonly partly altered to cerianite and bastnäsite-(La), occurs sporadically as 
small, pale yellow grains in cerite-bearing assemblages.

Percleveite-(Ce) is a newly described mineral species (Holtstam et al. 2003b), so far known only from 
a single sample of cerite ore. It occurs together with cerite-(Ce), bastnäsite-(Ce), quartz, and amphi-
bole. It has a yellowish gray to white colour, with a greasy to resinous luster and a white streak. The 

Table 1. REE minerals in the Bastnäs-type deposits.

Mineral Formula Subtype 1 Subtype 2
Allanite-(Ce) (Ce,La)CaFe2+Al2[Si2O7][SiO4]O(OH) x x
Bastnäsite-(Ce) (Ce,La)CO3F x x
Bastnäsite-(La) (La,Ca)CO3F x
Cerianite CeO2 x
Cerite-(Ce) (Ce,La,Nd,Ca)9(Mg,Fe)Si7O24(O,OH,F)7 x x
Dissakisite-(Ce) Ca(Ce,La)MgAl2[Si2O7][SiO4]O(OH) x x
Dollaseite-(Ce) Ca(Ce,La)Mg2Al[Si2O7][SiO4]F(OH) x
Ferriallanite-(Ce) (Ce,La)CaFe2+AlFe3+[Si2O7][SiO4]O(OH) x
Fluocerite-(Ce) (Ce,La)F3 x
Fluocerite-(La) (La,Ce)F3 x
Fluorbritholite-(Ce) Ca2(Ce,Nd)3[SiO4]3F x
“Fluorbritholite-(Y)” Ca2(Y,REE)3[SiO4]3F x
Gadolinite-(Ce) (Ce,Nd)2Fe2+Be2Si2O10 x x
Gadolinite-(Y) (Y,REE)2Fe2+Be2Si2O10 x
Håleniusite-(La) (La,Ce)OF x
Lanthanite-(Ce) (Ce,La)(CO3)3 • 8H2O x
Parisite-(Ce) Ca(Ce,La)2(CO3)3F2 x
Percleveite-(Ce) (Ce,La)2Si2O7 x
Törnebohmite-(Ce) (Ce,La)2Al[SiO4]2(OH) x x?
Västmanlandite-(Ce) (Ce,La)3CaAl2(Mg,Fe)2[Si2O7][SiO4]3(F,O)(OH)2 x
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hardness is c. 6 on Mohs’s scale. Imperfect cleavage occurs parallel to {00}. The mineral is transparent 
and colourless in thin section, with low interference colours. Optically, percleveite is uniaxial positive 
with ω = .840(2) and ε = .846(2).

Håleniusite-(La) is quite widespread in the deposit, but was not characterized as a mineral until 
recently (Holtstam et al. 2004). It is an alteration product of bastnäsite-(La) and occurs as yellow, 
powdery coatings in most cases, commonly in association with emerald green brochantite.

Lanthanite-(Ce) is a secondary mineral which appears as thin coatings on cerite-ferriallanite ore. 
Fresh crystals, lath-like to platy in habit, are pinkish to colourless and normally less than  mm across. 
The present official type locality for lanthanite-(Ce) is Britannia Mine in North Wales (Bevins et al. 
985). This is unfortunate, since lanthanite-(Ce) from Bastnäs was described and analysed by Berzelius 
(825).

Norberg area (subtype 2)

The Norberg district (Norbergs bergslag) was an important mining area for centuries. Operations 
started in the Middle Ages and ceased completely in 980. The iron deposits were worked for quartz-
banded ore, skarn ore and carbonate-hosted Mn-Fe ores. Generally, all ore types appear in a con-
tinuous belt with a south-west to north-east strike of mainly altered volcanogenic (stop ) and sub-
ordinate metasedimentary rocks (Ambros 983a, 988). The supracrustal units are surrounded by 
deformed (early Svecofennian, c. .89 Ga) intrusive rocks (granite–granodiorite–tonalite). Granites 
of the younger, undeformed generation are practically absent here (Fig. 9). The numerous mines and 
prospects belong to different mining fields (“fält” in Swedish) according to their geological and geo-
graphical position. Locally, Cu sulphide ores were also important, e.g. at Kallmora (Kapellgruvan) 
and Stripåsen. REE mineralisation has clearly been subeconomic in the area. 

The skarn ore deposits are characterized by large amounts of silicate skarns and Fe oxides in asso-
ciation with marble (dolomitic or calcitic). Allanite-(Ce) has been noted from practically every deposit 
of this kind, but only a few of them have been shown to exhibit a richer, more diversified type of REE 
mineralisation and are considered to be “Bastnäs-type deposits” (Geijer 96). Three of the deposits 
are situated close to the lake Noren (Fig. 9), in the vicinity of the town of Norberg: the Östanmossa 
mine (Röbergsfältet), the presently inaccessible mine Södra Hackspikgruvan (Smörbergsfältet), and 
the mine Johannagruvan (Bojmossefältet). The mine Malmkärragruvan lies in a more isolated posi-
tion, 5 km south-west of Norberg, close to the tarn Stora Malmtjärnen.

Malmkärra

The Malmkärragruvan deposit (stop 0) is hosted by a dolomitic marble, that forms a conformable 
layer with the surrounding metavolcanic succession, and which can be traced some 0 km to the 
south-west (Fig. 9). The carbonate layer appears to have its maximum thickness at this location, as a 
consequence of folding. Local faulting, mainly by vertical movements, has divided the deposit into 
segments (designated as separate ore bodies; Geijer 936; Fig. 0). The underlying bed (the footwall) 
consists of Mg-rich mica-schist, that grades into less altered metavolcanic rock at varying distances. 
The skarn ore replaced certain parts of the carbonate along its contact with the metavolcanic rock.

Light green amphibole (essentially tremolite), humite minerals, and phlogopite are the dominant 
skarn silicates. Magnetite is the major ore mineral, and typically occurs as subhedral grains, normally 
in aggregates of up to 0.5 mm size, enclosed by amphibole. Well-developed, isolated crystals have a 
distinct octahedral habit.

Ophicalcite, i.e. recrystallized (calcitic) carbonate, with patches of serpentine and chondrodite, 
is common within dolomite marble in proximity to the ore. Sulphide minerals (chalcopyrite, pyrite, 
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Fig. 9. Geological map of the central Norberg District (modified after Ambros 1988).
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molybdenite) appear locally in intimate association with the skarns. Allanite sensu lato is the most 
common REE mineral and appears as a mostly microscopic phase scattered in the magnetite-skarn 
ore. An exceptionally rich, c. 0.5 m wide layer of REE silicates was encountered at the deepest levels of 
the mine (Lillgruvemalmen at 205 m), in the middle of a transition zone where the skarn ore graded 
into pure carbonate rock (Geijer 927).

The Malmkärra mine has a long history– the oldest preserved record is from 664, when it was 
noted that the mine had been abandoned temporarily. The amount of ore was found to diminish rap-
idly with depth, and the mine was finally closed in 936. During the period 874–907, 87 000 tons of 
ore were mined. The production from 908 to the cessation of the mining operations corresponded to 
58 000 tons of Fe (Geijer & Magnusson 944). The mine dumps are quite mossy at Malmkärra, but it 
is still possible to find pieces with dollaseite-(Ce), fluorbritholite-(Ce) etc. with the aid of a hammer. 
A section with magnetite ore in direct contact with both dolomite marble and the metavolcanic wall 
rock is visible in the orifice of one of the mine-shafts.

Östanmossa

The Östanmossa deposit (stop 9) belongs to a relatively narrow zone of skarn rocks in association with 
sporadic carbonate remnants. It appears on the western limb of an extensive synform. Outside the 
skarn-altered zone, the surrounding rock is a stratified, K-dominant metavolcanic sequence (cf. stop ) 
with occasional intercalations of quartz-banded hematite and garnet skarns. Close to the deposit, the 
metavolcanic rock is to some extent transformed into “quartzite” (Geijer 936).

The carbonate rock at Östanmossa is more or less totally enclosed by skarns, and consists either 
of fine-grained, white dolomite or coarser calcite of a greyish or yellow colour. Well-developed ophi-
calcite with clinohumite is commonly seen in portions of the dolomite marble.

The skarns are dominated by tremolite–actinolite. The amphibole ranges in colour from dark 
green to nearly colourless and may be fibrous in habit. Diopside is encountered mostly as microscopic 
remnants in the amphibole masses. Phlogopitic mica and humite-group minerals belong to the com-
mon skarn minerals at the deposit. Östanmossa is the type locality for norbergite, Mg3(SiO4)F2 
(Geijer 926), which forms massive aggregates and veins of a purplish pink colour. Brownish garnet 
(andradite) skarns are locally common. Scheelite is quite abundant within the skarns. The largest 
concentration of REE silicates was found in the Grodorten drift at the 47-m level (Geijer 936).

The magnetite ore belongs to the amphibole skarns, and is occasionally massive and fine-grained. 
Locally, the ore has a layered structure, with up to  cm thick iron oxide bands alternating with 
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Fig. 10. Geological map of the Malmkärra de-
posit about the 150-m level (modified from 
Geijer 1936). 
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amphibole. Sulphide mineralisation is generally rare, but as the mine originally opened as a copper 
mine, chalcopyrite was probably locally common. It may be noted that bismuthinite is said to have 
been found here, albeit in very minor quantities. 

The mining operations were conducted in an open pit as well as in underground workings (Fig. ). 
The maximum depth of the mine, at the time of its closing in 93, was 5 m. The total production 
was estimated at c. 78 000 tons of Fe metal (Geijer & Magnusson 944). Apparently the mine was 
reopened at some point because the dumps are still quite fresh.

REE mineral assemblages 

Allanite-(Ce) is relatively common in the skarns of these deposits. Its modal abundance may reach a 
few percent. It is non-metamict, unaltered and strongly pleochroic in thin section. Larger, cm-sized 
crystals are locally encountered, e.g. at Östanmossa, in cases when the amphibole skarns are in direct 
contact with coarse-grained calcite. Allanite-(Ce) is often associated with tremolite, magnetite and 
chondrodite.

Dollaseite-(Ce) is an important mineral for the sequestration of REE in the Norberg district. This 
mineral was first described from Östanmossa under the name of “magnesium orthite” by Geijer 

Fig. 11. Private photo postcard from the early 
1930s, showing the large open pit and the head 
frame at the Östanmossa mine. Photo most 
probably by Per Geijer (1886–1976). Collection 
of Jörgen Langhof.
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(927). Peacor & Dunn (988) renamed it dollaseite-(Ce), and demonstrated that the mineral was in 
fact not the simple Mg analogue of allanite (“orthite”), but another member of the epidote group 
related through a charge-coupled substitution involving both cations and anions: Mg2+ + F– = (Fe, 
Al)3+ + O2–. Recent analyses (Holtstam & Andersson, in prep.) have shown that chemical variations 
exist, and some samples from Malmkärra tend to lie closer to dissakisite-(Ce), the true Mg analogue 
of allanite.

Dollaseite-(Ce) typically occurs in dark brown, several cm wide aggregates in dolomite-tremolite 
rock. The mineral grains are <0.5 mm wide and normally irregular in outline, but subhedral crystals 
have locally also formed in direct contact with carbonate. Occasionally dollaseite-(Ce) occurs as ra-
diating, twinned crystals. It is commonly associated with magnetite and norbergite. The mineral has 
also been observed as a microscopic phase with fluorbritholite-(Ce), västmanlandite-(Ce) etc.

Västmanlandite-(Ce) is a new mineral species, structurally and chemically related to dollaseite-(Ce), 
törnebohmite-(Ce) and most closely to gatelite-(Ce) (Holtstam et al. 2005, in press). Malmkärra is 
the type locality, but it has recently been detected also at S. Hackspikgruvan and Johannagruvan. 
Västmanlandite-(Ce) is black to dark brown in colour, translucent with a vitreous lustre, and its 
streak is yellowish grey. It occurs as essentially anhedral grains 0.–2 mm across. Cleavage is good 
along {00}, and fracture is uneven to conchoidal. The Mohs hardness is approximately 6. Optically, 
it is biaxial negative with α = .78(4), β = .792(calc.), γ = .80(4) and 2Vα = 75(5)°. The dispersion is 
strong with r > v. The mineral is strongly pleochroic, with X pale yellow, Y reddish brown, Z dark 
brown, and absorption Z ≈ Y > X (orientation unknown). In general, västmanlandite-(Ce) is very 
similar in its macroscopic and microscopic character to allanite-dollaseite, therefore chemical and 
diffraction analysis will be necessary in most cases for a confirmation. Associated minerals are com-
monly fluorbritholite-(Ce), tremolite, magnetite, dollaseite-(Ce), and dolomite. The petrographic data 
indicate that västmanlandite-(Ce) formed in secondary reactions involving fluorbritholite-(Ce) and 
tremolite as the principal reactants (Holtstam et al. 2005).

Fluorbritholite-(Ce) appears as the paragenetically oldest REE mineral in these deposits. The colour 
varies from greyish pink to brownish red. The mineral commonly appears in medium-grained ag-
gregates that may reach several cm across, in association with the other principal REE silicates that, 
in part, may have formed at the expense of fluorbritholite-(Ce). Geijer (927) reported the occurrence 
of conspicuous aggregates of “cerite” in a dolomite vein transecting tremolite skarn. This material has 
recently been shown to be a Y-dominant analogue to fluorbritholite-(Ce).

Cerite-(Ce) is megascopically and paragenetically similar to fluorbritholite-(Ce). This fact explains 
why the two minerals were never distinguished in earlier descriptions of the deposits (e.g. Geijer 927). 
In a few cases, cerite-(Ce) has been observed coexisting with fluorbritholite-(Ce).

Gadolinite-(Ce) and gadolinite-(Y) have been observed mainly in thin sections. They form green-
ish, irregular grains in association with fluorbritholite-(Ce), dollaseite-(Ce) etc. The individual crys-
tals are often chemically zoned with respect to the REE and Y.

Törnebohmite-(Ce) is said to have been found in relatively large quantities at S. Hackspikgruvan 
(Geijer 936). The presence of this mineral seems not to have been confirmed in modern investiga-
tions.

Bastnäsite-(Ce) and other REE-bearing fluorocarbonates are relatively uncommon in the Norberg 
district. They are mostly found as microscopic minerals in close association with the main REE 
minerals. Visible aggregates (up to  cm) of pale red bastnäsite in association with fluorite have been 
found in amphibole skarns from S. Hackspikgruvan.
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Parisite-(Ce) has been observed in microscopic amounts in samples from Östanmossa, as an altera-
tion product of fluorbritholite, and in regular intergrowths with bastnäsite-(Ce).

Genetic considerations

As concluded by Geijer (927, 96), the Bastnäs-type mineralisations have formed epigenetically, 
through reactions between high-temperature fluids and pre-existing carbonate rocks. The spatial 
relation to Mg-enriched country rocks suggested a genetic link to extensive metasomatic alterations, 
in his view driven by the emplacement of the early (.9 Ga) granitoids, that have affected the felsic 
volcanic successions. According to contemporary knowledge this type of Mg metasomatism is, how-
ever, related to synvolcanic alteration and circulation of seawater-dominated fluids (e.g. Trägårdh 
988, 99, Ripa 994).

Preliminary microthermometric data for fluid inclusions in bastnäsite from Nya Bastnäs have shown 
that the mineral was deposited at approximately 400 °C from a CO2-rich aqueous fluid with a moderate 
salinity (Holtstam & Broman 2002). Bastnäsite is secondary in relation to cerite-(Ce) and ferriallanite-
(Ce), suggesting that the initial temperatures during the mineralisation process was even higher.

The carbon isotope values (δ3CPDB) for mineralised carbonate samples (–4.4 to –6.7 per mil) are 
within the expected range for a magmatic or mantle source of CO2. Host marble values group tightly 
around –2.4 per mil (Holtstam & Broman 2002). These new data suggest that the hydrothermal fluids 
responsible for the mineralisation were largely of magmatic origin. The development of contrasting 
mineral assemblages and compositions in the two types of deposits is probably mainly related to dif-
ferent fluid/rock ratios and variations in F concentration of the fluids. 

The formulation of a genetic model was for a long time hampered by the lack of geochronological 
data, but recent Re–Os dating of molybdenite grains extracted from REE-mineralised samples have 
given crystallization ages in the range .85–.89 Ga (Holtstam 2004, and unpubl.). The Cu-Mo-Bi-
W-Be-F association in the deposits indicates a petrogenetic link to granitic magmatism. Granites 
belonging to the younger suite are at some locations in Bergslagen clearly associated with W-Mo 
mineralisation. Molybdenite ages from such intrusive rocks and adjacent skarn assemblages fall in the 
time span .78–.80 Ga (Sundblad et al. 996). The new Re–Os dates, however, overlap with the early 
orogenic period in this part of Bergslagen, and suggest that the formation of Bastnäs-type deposits is 
related to either a waning stage of the early Svecofennian magmatic phase (cf. Hellingwerf & Baker 
985, Baker & Hellingwerf 988), or to an undisclosed magmatic system in the area.

Many of the world’s REE deposits containing bastnäsite, fluorbritholite and cerite are associated 
with alkaline intrusive rocks (cf. Jones et al. 996). The lack of minerals bearing significant amounts 
of elements like Na, Sr, Ba, Th and Nb makes the involvement of a carbonatitic fluid less likely in 
the case of the Bastnäs-type deposits. Rather, the Bastnäs-type deposits share many characteristics 
with the genetically diversified, intrusion-related Fe oxide-Cu-Au-REE deposits (Olympic Dam type; 
Hitzman et al. 992).

HISTORY OF THE MINERAL AND ELEMENT DISCOVERIES AT BASTNÄS 
J. Langhof

It is not really known when the peculiar red heavy stone of Bastnäs was first noticed in the mine 
Sankt Göransgruvan. The chemist and assayer Axel Fredrik Cronstedt (722–765) probably became 
aware of its existence as early as the 740s and the name “tungsten” appears on a specimen label in 
746 (Fig. 2) (Nordenskiöld 873). In 750, Cronstedt reports the presence of a “dense reddish rather 
heavy ironstone” and describes also a “black wolfram” containing iron (Tideström 890). These are 
probably the first notes on cerite and allanite from Bastnäs. 

The red mineral was described by Cronstedt (75) under the name of “tungsten” (heavy stone) 
together with another heavy, but white, mineral, from Bispberg further east in Bergslagen. The latter 
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turned out to be scheelite, containing the new element tungsten. The red mineral became known as 
“Bastnäs tungsten” (the heavy stone of Bastnäs or Reddish tungsten). 

In 782, the then mere 5 years old Wilhelm Hisinger (Hising before his ennoblement in 787) sent 
a piece of the Bastnäs tungsten to the famous chemist Carl Wilhelm Scheele (742–786) in Köping, 
Sweden. In spite of his well-known analytical skills, Scheele could not find anything except silica, 
alumina, a little iron and no tungsten. 

In 787, the artillery officer Carl Axel Arrhenius (757–824) found a black mineral in the quartz 
and feldspar quarry at Ytterby, north-east of Stockholm. It was shown by the chemist Johan Gadolin 
in Åbo (Turku), Finland, to contain a new “earth” – yttria. This was later to become yttrium and 
marked the beginning of more than a century of research on the rare earth elements. The black min-
eral was later named gadolinite. 

With this information Hisinger returned to his mineral collection, which he housed in one of the 
two wings of his castle-like mansion in Skinnskatteberg (now a school for forest engineers; Skogsmäs-
tarskolan) c. 5 kilometres east of the Riddarhyttan ore district. Wilhelm Hisinger (766–852) was a 
wealthy foundry proprietor (Fig. 3) who had studied natural sciences at Uppsala University under 
famous teachers such as Torbern Bergman (Heijkensköld 934). His wide range of interests included 
chemistry, mineralogy, geology, palaeontology, botany, meteorology, and topography. His economical 
independence provided him with opportunities to travel and to spend comparatively large amounts 
of money on his spare time occupations. He published several books on mineralogical, geological and 
palaeontological subjects and they were to a great extent printed at his own expense (Regnéll 990). 
He also had a well-equipped laboratory where he performed analyses of various minerals, rocks, ores, 
and foundry products. 

Fig. 13. Wilhelm Hisinger. After a wax 
medallion made by L. Posch in Berlin in 

1821 (Heijkenskjöld 1934).

Fig. 12. Label belonging to the oldest known specimen of 
cerite-(Ce), labelled “tungsten”. The specimen was col-
lected in 1746 by Samuel Schröderstierna (1720–1779), and 
contains the only (?) known specimen with cerite-(Ce) 
showing crystal faces. Naturhistoriska riksmuseet collec-
tion, no. 57:1236–45).
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Hisinger speculated whether yttria could be found also in the red mineral from Bastnäs. He ob-
tained promising results and when the 23-year-old Jacob Berzelius visited him in the spring of 803, 
mineralogical and chemical subjects were discussed and these of course included the problematic 
“Bastnäs tungsten”. 

Jacob Berzelius (779–848) is, together with Carl von Linné, the most famous Swedish scientist 
of all time and one of the most renowned chemists in history (Fig. 4). In 802 he had moved from 
Uppsala to Stockholm where he soon came in contact with the wealthy Hisinger, sharing the same 
love for the natural sciences. For Berzelius this was a very fortunate friendship, because Hisinger not 
only became a life-long friend but also in the beginning an important benefactor for the young scien-
tist. In 84, Berzelius among others introduced the new chemical classification system for minerals, 
and also gave the elements new chemical symbols that are still in use. His efforts and contributions 
to science cannot be overestimated, and the interested reader is referred to articles by Jorpes (966), 
Melhado (98) and Moore (988). 

Hisinger and Berzelius made new analyses of both gadolinite and the red Bastnäs mineral and 
came to the conclusion that a previously unknown chemical element, with several characteristics 
in common with yttria, was present in the “Bastnäs tungsten”. Further analyses undertaken during 
the winter 803–804 confirmed this conclusion. Berzelius gave this new element the preliminary 
name “bastium”, after the locality and observed that it occurred in two oxidation states. The name 
“bastium” was changed to cerium (Ce), this name being derived from the discovery of the asteroid 
Ceres by the Italian astronomer Giuseppe Piazzi in 80, and the mineral was hence named cerite. See 
Trofast (996) for a detailed description of the discovery of Ce. 

The discovery was revealed to Berzelius’s former teacher in chemistry at Uppsala University, pro-
fessor Johan Afzelius (753–837), who together with other colleagues speculated in Berzelius’s ability 
to make reliable chemical analyses. On the basis of a few test analyses they thought that cerium was 
a mixture of yttria and iron or something similar. Discussions between leading men of chemistry in 
Sweden were held and renowned chemists including Anders Gustaf Ekeberg (767–83) and Johan 

Fig. 14. Jacob Berzelius. Lithographed portrait. Collection of 
the Hagströmer Medico-Historical Library.

Fig. 15. Carl Gustaf Mosander with his blow-pipe equip-
ment. Lithographed portrait. Collection of the Hagströmer 
Medico-Historical Library.
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Gottlieb Gahn (745–88) were involved. Berzelius and Hisinger won this battle, but a new, much 
more prestigious event was ahead. 

Berzelius’s and Hisinger’s paper on the discovery of cerium had been approved by the German 
chemist Adolph Ferdinand Gehlen (775–85) for immediate publication in his journal. However, 
in the third issue of the same journal, which was just printed, Gehlen had a report dealing with the 
discovery of a new “earth” from the same mineral, written by the German chemist Martin Hein-
rich Klaproth (743–87) in Berlin (Trofast 996). Klaproth called the new “earth” ochroite (terre 
ochroite), due to the light brown colour of the pure substance. This news was very disappointing for 
Berzelius and Hisinger, but Hisinger, at his own expenses, had their Swedish version of the paper, a 
small pamphlet of 24 pages, printed in 50 copies in May 804, to be distributed among their mutual 
scientific friends. When the paper appeared in Gehlen’s journal (Hisinger and Berzelius 804b) it at-
tracted much attention among the chemists of Europe. It was published in a number of other journals 
around Europe in different languages and the news spread quickly. Due to the simultaneous publica-
tion of the discovery, a priority dispute began between Berzelius/Hisinger and Klaproth. This led to 
disappointment and strange rumours spread among all three of them. After many letters, explanations 
and controls of analyses where the French scientist Louis Nicolas Vauquelin (763–829) and Gehlen 
played important roles, Berzelius’s and Hisinger’s discovery won priority. This was eventually also 
accepted by Klaproth (Trofast 996). Klaproth did, however, advocate that the name could as well, or 
better, be derived from the Greek word “cera”, meaning wax, thereby implying that the names should 
be “cererum” for the element and “cererite” for the mineral (Klaproth 807). Berzelius, only 25 years 
old at the time, had shown little respect for the scientific establishment in Europe, and that a new era 
was about to be established. The discovery of cerium was followed by more attention and controversy 
in Sweden and abroad, than any other discovery made by a Swedish scientist since the days of Carl 
Wilhelm Scheele and the great controversy on oxygen (Jorpes 966).

In the 820s, Carl Gustaf Mosander (797–858), a chemist, surgeon and mineralogist (Fig. 5), 
continued the investigation of cerite from Bastnäs. Mosander was one of Berzelius’s numerous pu-
pils and he ended up as curator of minerals at Naturhistoriska riksmuseet. Before that he succeeded 
Berzelius as professor at Karolinska Institutet where he taught chemistry, pharmacy and mineralogy. 
During his work with the cerium oxides, “Pater Moses”, as his nickname was, had become increas-
ingly suspicious regarding their true nature. He obtained results indicating a mixture of rare earths. 
But it was not until 839, after much persuasion by Berzelius, that he published the discovery of the 
new element lanthanum (La), from the Greek word “lantánein”, being hidden. In the same year, the 
Swedish mineralogist and geologist Axel Erdmann (84–869) also discovered lanthanum in a min-
eral from Norway that he named mosandrite in honour of Mosander’s discovery (Lundgren 987). 
Four years later, Mosander discovered another new element from the red Bastnäs mineral, and named 
this new element didymium (Greek for twin) because, as he said, it seemed to be “an inseparable 
twin brother of lanthanum” (Weeks & Leicester 968). Didymia itself was further separated into 
neodymium (Nd) and praseodymium (Pr) in 885 by the Austrian chemist Karl Auer von Welsbach 
(858–929). See compilation of Öhman et al. (2004).

LOCALITY DESCRIPTIONS 
U.B. Andersson, P. Nysten, I. Lundström & D. Holtstam

For locations, see Figures 7 and 9. Coordinates are given in the Swedish national grid, RT90.

Stop 1. Viken, Klackberg (6660844/50564). Fresh roadcut along the road Klackberg–Norberg, west of 
lake Noren. Felsic, quartz-porphyritic, massive, but foliated metavolcanic rock (a possible, pyroclastic 
mass flow deposit?), interbedded with fine-grained, even-grained, bedded metavolcanic rocks, prob-
ably originally volcanic ash–siltstones and exhalites. Gradual shifts between red and grey varieties. 
Fairly well-preserved with limited deformation. Scattered signs of incipient Mg-alteration seen in the 
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surrounding outcrops are missing here. Nevertheless, the rocks may well have undergone previous 
alkali metasomatic Na- or K-enrichment, which unfortunately is difficult to discern macroscopically. 
Skarn and magnetite horizons (Fig. 3). Phenocryst-bearing metabasite, that partly has taken up the 
deformation.

Stop 2. Road outcrop on northern side of road 68, 200 m west of side road to Bäckegruvan. 
(6634750/485580). Heavily Mg-altered, felsic metavolcanic rock, interpreted to have undergone earlier 
K-metasomatism. K-rich metavolcanic rocks crop out south of the road and possibly occur as relict 
fragments in this outcrop, see also locality 0 (Malmkärragruvan). The Mg-metasomatically altered 
matrix consists of biotite, muscovite, quartz, cordierite, and magnetite, possibly also with andalusite. 
The feldspar content is very low, which is typical for rocks having undergone Mg-metasomatism, the 
main effect of which was feldspar breakdown (Lagerblad et al. 987, Trägårdh 988, 989, 990, 99).

Stop 3. Bastnäs mine area (663636/4878). Large mine dumps of magnetite skarn ore (possibly also 
quartz-banded hematite ore may be found), locally associated with REE mineralization, as described 
in detail above. Country rocks of skarn-banded, altered volcanic rocks can be observed in outcrop. In 
places, within the horizontal adit (Nya Bastnässtollen), cerite ore (Fig. 6) and small occurrences of 
microscopic uraninite associated with solid hydrocarbons (“thucholite”) may be observed.

Fig. 16. Cerite ore (reddish violet 
lumps) within amphibole-skarn. 
In situ occurrence in horizontal 
adit (Nya Bastnässtollen) at Bast-
näs (see stop 3). Width of pho-
tograph approximately 50 cm. 
Photo: Per Nysten. 

Fig. 17. Schematic overview of 
stop 4 at Högfallsåsen.
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Stop 4. The Högfallsåsen roadcut (6637740/487982). This, relatively fresh outcrop is more than 
00 m long, and occurs on both sides of road 68 between Fagersta and Riddarhyttan (the north-west 
side yields the best information). It shows metasomatically altered felsic volcanic rocks, skarn iron ore, 
quartz veins of several generations, and pegmatites (Fig. 7). A few 0’s of m to the south-east of the 
roadcut, exhalative BIF-horizons (Blåkulla formation; Geijer 923) may be studied. A good starting 
point is at the southernmost part of the outcrop. Steeply folded banded tuffite alternates with sections 
consisting of epidote, dark brown andradite, minor hornblende, and diopside (Fig. 8). This skarn 
locally carries magnetite, molybdenite and Mo-scheelite. Further to the north, grey mica schist spot-
ted with cm-sized cordierite (Fig. 4), and locally andalusite, alternates with sections rich in chlorite 
with large aggregates of radiating Mg-amphibole (gedrite–anthophyllite, Fig. 5). Although clearly 
post-deformational in age, the crystallization of these radiating orthoamphiboles was probably much 
favoured by the much earlier, hydrothermal Mg-enrichment of the originally potassium-rich volcanic 
rock. This schistose rock dominates the rest of the section going northwards. It also shows a steep 
lineation. Deformed quartz pods, as well as vertical, up to 3 dm wide quartz veins cut the cordierite 
mica schist. At the contact between these rocks accumulations of black tourmaline are common. In 
the northernmost part of the outcrop, a horizontal pegmatite has intruded into a system of subparallel 
fractures. This dyke is 2–3 dm wide and consists of quartz, white feldspar(s), muscovite, and minor 
small spots of black REE phases(?). Anhedral green chrysoberyl (max. 0 mm) has been verified by X-
ray diffraction. From road 68, follow the crossing small forest road c. 30 m to the south-east and study 
the blasted outcrop on the right hand side. Boulders of banded hematite-quartz-epidote-spessartine-
(rhodonite) stems from the exhalative Blåkulla formation which can be seen in several forest outcrops 
nearby and used as a marker horizon over a long distance (Källfallet–Gamla Bastnäs–Älgtorp).

Fig. 18. Skarn-banded, felsic metavolcanic 
rock. Dark, reddish-brown, andradite-rich 
skarn horizon to the right. Roadcut along 
road 68 at Högfallsåsen (stop 4). Photo: Dan 
Holtstam.
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Stop 5. Skinnskatteberg (6634683/493469). Roadcut of greyish red, coarsely medium-grained, some-
what deformed granite, mapped as belonging to the older, early Svecofennian (c. .89 Ga, although 
not dated in this area) generation. Contains large quartz veins and common small micaceous en-
claves. Some workers have associated W-Mo occurrences with this generation of granite (e.g. Baker 
& Hellingwerf 988). 

Stop 6. Small roadcut of greyish white, medium-grained granite to (albite?) tonalite (663380/4945). 
This granitoid may be an example of an early granitoid that was subject to the same regional Na-
metasomatism as the volcanic rocks. It shows diffuse borders towards the altered metavolcanic rocks 
(Ambros 983b). Baker (985) describes a case of alteration and Na-enrichment in an older Svecofen-
nian granite further west in Bergslagen, where also the REE have been highly mobile.

Stop 7. South of Uvberget (662980/48340). Outcrops of red,  porphyritic, massive biotite granite 
with c. 0.5 × 2 cm tabular K-feldspars (petrographic description is given in Geijer 923). It is strongly 
radioactive (Ambros 983b) and contains frequent enclaves of metavolcanic rocks. This granite belongs 
to the youngest generation in the area, expected to be c. .80 Ga. However, no age determination 
exists on this pluton. It is probable that it formed in conjunction with the late Svecofennian regional 
metamorphism and pegmatite formation in the area. Granites of this generation are related to W-
Mo-deposits elsewhere in Bergslagen (cf. Sundblad & Bergman 996).

Stop 8. Quarry in pegmatite  at Hultebo/Godkärra (663880/49090). This dyke was originally worked 
by yeomen from Godkärra during the 8th and 9th centuries. In the year 927, 300 tons of good qual-
ity feldspar and 00 tons of quartz were quarried. The outcropping dyke occurs on a small hill and 
is surrounded by “Mg-metasomatic” mica schist. The quarried part is water-filled and not accessible, 
but pegmatite outcrops can be found in the vicinity. The main minerals of the pegmatite are white 
albite, grey quartz, white muscovite in aggregates up to 0 × 30 cm, minor biotite, and euhedral, up to 
0 cm long andalusite prisms. The andalusite often occurs in fine-grained greenish yellow muscovite. 
Locally, cm-sized light brown monazite (xenotime?) crystals occur associated with albite and quartz. 
The phosphate is also accompanied by dark brown, anhedral crystals of polycrase-(Y). Whether K-
feldspar is present is uncertain, although graphic feldspar-quartz has been noted. The age of this and 
similar pegmatites in the area have not been determined, but most are probably related to the late 
Svecofennian (c. .80 Ga) regional metamorphism and granite formation.

Stop 9. Östanmossa mine (666225/50692). Mine dumps, close to the large open pit, can be stud-
ied. Actinolite-dominated skarns, with magnetite ore, and dolomitic marble, containing portions of 
‘ophicalcite’ associated with humite minerals, as well as a variety of REE-minerals may be found (as 
detailed above).

Stop 10. Malmkärra mine (666006/50227). Several small pits of skarn iron ore within dolomitic mar-
ble, in contact with Mg-altered metavolcanic rocks. REE-mineral assemblages (as described above) 
may be observed in the dumps in association with the skarn ore. In one place (at the margin of a 
pit), ore and host carbonate can be observed in contact with the volcanic rocks. Nearby, typical mica 
schistose, heavily Mg-altered, felsic metavolcanic rock, in the approximate strike direction from Stop 
 can be observed. The rocks at that locality (Stop ) could well be the precursor rocks to this Mg-
altered variety.
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